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Abstract

To tackle interpretability in deep learning, we present a novel framework to jointly1

learn a predictive model and its associated interpretation model. The interpreter2

provides both local and global interpretability about the predictive model in terms of3

human-understandable high level attribute functions, with minimal loss of accuracy.4

This is achieved by a dedicated architecture and well chosen regularization penalties.5

We seek for a small-size dictionary of high level attribute functions that take6

as inputs the outputs of selected hidden layers and whose outputs feed a linear7

classifier. We impose strong conciseness on the activation of attributes with an8

entropy-based criterion while enforcing fidelity to both inputs and outputs of9

the predictive model. A detailed pipeline to visualize the learnt features is also10

developed. Moreover, besides generating interpretable models by design, our11

approach can be specialized to provide post-hoc interpretations for a pre-trained12

neural network. We validate our approach against several state-of-the-art methods13

on multiple datasets and show its efficacy on both kinds of tasks.14

1 Introduction15

Interpretability in machine learning systems [16, 36, 41] has recently attracted a large amount of16

attention. This is due to the increasing adoption of these tools in every area of automated decision-17

making, including critical domains such as law [24], healthcare [47] or defence. Besides robustness,18

fairness and safety, it is considered as an essential component to ensure trustworthiness in predictive19

models that exhibit a growing complexity. Explainability and interpretability are often used as20

synonyms in the literature, referring to the ability to provide human-understandable insights on the21

decision process. Throughout this paper, we opt for interpretability as in [15] and leave the term22

explainability for the ability to provide logical explanations or causal reasoning, both requiring more23

sophisticated frameworks [17, 19, 43]. To address the long-standing challenge of interpreting models24

such as deep neural networks [42, 10, 9], two main approaches have been developed in literature:25

post-hoc approaches and “by design methods”.26

Post-hoc approaches [7, 40, 37, 44] generally analyze a pre-trained system locally and attempt to27

interpret its decisions. “Interpretable by design” [3, 1] methods aim at integrating the interpretability28

objective into the learning process. They generally modify the structure of predictor function itself29

or add to the loss function regularizing penalties to enforce interpretability. Both approaches offer30

different types of advantages and drawbacks. Post-hoc approaches guarantee not affecting the31

performance of the pre-trained system but are however criticized for computational costs, robustness32

and faithfulness of interpretations [50, 27, 5]. Interpretable systems by-design on the other hand,33

although preferred for interpretability, face the challenge of not losing out on performance.34

Here, we adopt another angle to learning interpretable models. As a starting point, we consider35

that prediction (computing ŷ the model’s output for a given input) and interpretation (giving a36

human-understandable description of properties of the input that lead to ŷ) are two distinct but37

strongly related tasks. On one hand, they do not involve the same criteria for the assessment of their38
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quality and might not be implemented using the same hypothesis space. On the other hand, we wish39

that an interpretable model relies on the components of a predictive model to remain faithful to it.40

These remarks yield to a novel generic task in machine learning called Supervised Learning with41

Interpretation (SLI). SLI is the problem of jointly learning a pair of dedicated models, a predictive42

model and an interpreter model, to provide both interpretability and prediction accuracy. In this work,43

we present FLINT (Framework to Learn With INTerpretation) as a solution to SLI when the model44

to interpret is a deep neural network classifier. The interpreter in FLINT implements the idea that45

a prediction to be understandable by a human should be linearly decomposed in terms of attribute46

functions that encode high-level concepts as other approaches [4, 18]. However, it enjoys two original47

key features. First the high-level attribute functions leverage the outputs of chosen hidden layers48

of the neural network. Second, together with expansion coefficients they are jointly learnt with the49

neural network to enable local and global interpretations. By local interpretation, we mean a subset50

of attribute functions whose simultaneous activation leads to the model’s prediction, while by global51

interpretation, we refer to the description of each class in terms of a subset of attribute functions52

whose activation leads to the class prediction. Learning the pair of models involves the minimization53

of dedicated losses and penalty terms. In particular, local and global interpretability are enforced54

by imposing a limited number of attribute functions as well as conciseness and diversity among the55

activation of these attributes for a given input. Additionally we show that FLINT can be specialized56

to post-hoc interpretability if a pre-trained deep neural network is available.57

Key contributions:58

• We present FLINT devoted to Supervised Learning with Interpretation with an original59

interpreter network architecture based on some hidden layers of the network. The role of60

the interpreter is to provide local and global interpretability that we express using a novel61

notion of relevance of concepts.62

• We propose a novel entropy and sparsity based criterion for promoting conciseness and63

diversity in the learnt attribute functions and develop a simple pipeline to visualize the64

encoded concepts based on previously proposed tools.65

• We present extensive experiments on 4 image classification datasets, MNIST, FashionM-66

NIST, CIFAR10, QuickDraw, with a comparison with state-of-the-art approaches and a67

subjective evaluation study.68

• Eventually, a specialization of FLINT to post-hoc interpretability is presented while corre-69

sponding numerical results are deferred to supplements.70

2 Related Works71

We emphasize here more on the methods relying upon a dictionary of high level attributes/concepts,72

a key feature of our framework. A synthetic view of this review is presented in the supplements to73

effectively view the connections and differences w.r.t wider literature regarding interpretability.74

Post-hoc interpretations. Most works in literature focus on producing a posteriori interpreta-75

tions for pre-trained models via input attribution. They often consider the model as a black-box76

[40, 37, 8, 30, 14] or in the case of deep neural networks, work with gradients to generate saliency77

maps for a given input [45, 46, 44, 39]. Very few post-hoc approaches rely on high level concepts.78

They come under the subclass of concept activation vector (CAV)-based approaches. TCAV [26]79

proposed to utilize human-annotated examples to represent concepts in terms of activations of a80

pre-trained neural network. The sensitivity of prediction to these concepts is estimated to offer an81

explanation. ACE [18] attempts to automate the human-annotation process by super-pixel segmenta-82

tion and clustering these segments based on their perceptual similarity where each cluster represents83

a concept. ConceptSHAP [49] introduces the idea of “completeness” in ACE’s framework. The84

CAV-based approaches already strongly differ from us in context of problem as they only consider85

post-hoc interpretations. TCAV generates candidate concepts using human supervision and not from86

the network itself. While ACE automates concept discovery, the concepts are less dynamic as by87

design they are associated to a single class and rely on being represented via spatially connected88

regions. Moreover, since ACE depends on using a CNN as perceptual similarity metric for image89

segments (regardless of aspect ratio, scale), it is limited in applicability (experimentally supported in90

supplement Sec. S.2).91

Interpretable neural networks by design. Most works from this class learn a single model by92

either modifying the architecture [3], the loss functions [51, 13], or both [6, 35, 4, 12]. Hendricks93

et al. [22] proposed a system that jointly learns a predictor and a module that can generate textual94
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explanations. GAME [34] shapes the learning problem as a co-operative game between predictor and95

interpreter. However, it learns a separate local interpreter for each sample rather than a single model.96

The above methods do not utilize high-level concepts for interpretation and offer local interpretations,97

with the exception of neural additive models [2], which are currently only suitable for tabular data.98

Self Explaining Neural Networks (SENN) [4] presented a generalized linear model wherein coeffi-99

cients are also modelled as a function of input. The linear structure is to emphasize interpretability.100

SENN imposes a gradient-based penalty to learn coefficients stably and other constraints to learn hu-101

man understandable features. Unlike SENN, to avoid trade-off between accuracy and interpretability102

in FLINT, we allow the predictor to be an unrestrained neural network and jointly learn the interpreter.103

Interpretations are generated at a local and global level using a novel notion of relevance of attributes.104

Moreover, FLINT can be specialized for generating post-hoc interpretations of pre-trained networks.105

Known dictionary of concepts. Some recent works have focused on different ways of utilizing a106

known dictionary of concepts for interpretability [25], by transforming the latent space to align with107

the concepts [13] or by adding user intervention as an additional feature to improve interactivity [28].108

3 Learning a classifier and its interpreter with FLINT109

We introduce a novel generic task called Supervised Learning with Interpretation (SLI). Denoting110

X the input space, and Y the output space, we assume that the training set S = {(xi, yi)Ni=1} is111

composed of n independent realizations of a pair of random variables (X,Y ) defined over X × Y .112

SLI refers to the idea that the interpretation task differs from the prediction task and must be taken113

over by a dedicated model that depends on the predictive model to be interpreted. Let us call F the114

space of predictive models from X to Y . For a given model f ∈ F , we denote Gf the family of115

models gf : X → Y , that depend on f and are devoted to its interpretation. For sake of simplicity,116

an interpreter gf ∈ Gf is denoted g, omitting the dependency on f . With these assumptions, the117

empirical loss of supervised learning is revisited to include explicitly an interpretability objective118

besides the prediction loss yielding to the following definition.119

Supervised Learning with Interpretation (SLI):120

Problem 1: arg min
f∈F,g∈Gf

Lpred(f,S) + Lint(f, g,S),

where Lpred(f,S) denotes a loss term related to prediction error and Lint(f, g,S) measures the121

ability of g to provide interpretations of predictions by f .122

Remark 1 A good example of SLI is provided by the visual explanation generation method introduced123

by Hendricks et al. [22] which jointly learns to predict a class label and a textual explanation.124

The goal of this paper is to address Supervised Learning with Interpretation when the hypothesis125

space F is instantiated to deep neural networks and the task at hand is multi-class classification. We126

present a novel and general framework, called Framework to Learn with INTerpretation (FLINT) that127

relies on (i) a specific architecture for the interpreter model which leverages some hidden layers of128

the neural network network to be interpreted, (ii) notions of local and global interpretation and (iii)129

corresponding penalties in the loss function.130

3.1 Design of FLINT131

All along the paper, we take X = Rd and Y = {y ∈ {0, 1}C ,
∑C
j=1 y

j = 1}, the set of C one-hot132

encoding vectors of dimension C. We set F to the class of deep neural networks with l hidden layers133

of respective dimension d1, . . . , dl. Each element f : X → Y of F satisfies: f = fl+1 ◦ fl ◦ ... ◦ f1134

where fk : Rdk−1 → Rdk , d0 = d, dl+1 = C, k = 1, ..., l + 1 is the function implemented by layer135

k. A network f in F is completely identified by its generic parameter θf . As for the interpreter136

model g ∈ Gf , we propose the following original architecture which exploits the outputs of chosen137

hidden layers of f . Denote I = {i1, i2, ..., iT } ⊂ {1, . . . , l} the set of indices specifying the138

intermediate layers of network f to be accessed and chosen for the representation of input. We define139

D =
∑T
t=1 dit . Typically these layers are selected from the latter layers of the network f . The140

concatenated vector of all intermediate outputs for an input sample x is denoted as fI(x) ∈ RD.141

Given f a network to be interpreted and a positive integer J ∈ N∗, an interpreter network g142
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Figure 1: (Left) General view of FLINT. (Right) Instantiation of FLINT on a deep architecture.

computes the composition of a dictionary of attribute functions Φ : X → RJ and an interpretable143

function h : RJ → Y .144

∀x ∈ X , g(x) = h ◦ Φ(x), (1)
In this work, we take: h(Φ(x)) := softmax(WTΦ(x)) but other models like decision trees could145

be eligible. The attribute dictionary is composed of functions φj : X → R+, j = 1, . . . J whose146

non-negative images φj(x) can be interpreted as the activation of some high level attribute, i.e. a147

"concept" over X . A key originality of the model lies in the fact that the attribute functions φj148

(referred to as attribute for simplicity) leverage the outputs of hidden layers of f specified by I:149

∀j ∈ {1, . . . , J}, φj(x) = ψj ◦ fI(x) (2)

where each ψj : RD → R+ operates on the accessed hidden layers. Here, the set of functions ψj , j =150

1, . . . J is defined to form a shallow network Ψ (around 3 layers) whose output is Ψ(fI(x)) = Φ(x)151

(example architecture in Fig. 1). Interestingly, φj are defined over X and as a consequence can be152

interpreted in the input space which is the most meaningful for the user (see Sec. 4). For sake of153

simplicity, we denote Θg = (θΨ, θh) the specific parameters of this model, while the parameters154

devoted to the computation of fI(x) are shared with f .155

3.2 Interpretation in FLINT156

The interpreter being defined, we need to specify its expected role and corresponding interpretability157

objective. In FLINT, interpretation is seen as an additional task besides prediction. We are interested158

by two kinds of interpretation, one at the global level that helps to understand which attribute functions159

are useful to predict a class and the other at the local level, that indicates which attribute functions are160

involved in prediction of a specific sample. As a preamble, note that, to interpret a local prediction161

f(x), we require that the interpreter output g(x) matches f(x). When the two models disagree, we162

provide a way to analyze the conflictual data and possibly raise an issue about the confidence on the163

prediction f(x) (see Supplementary Sec. S.2). To define local and global interpretation, we rely on164

the notion of relevance of an attribute.165

Given an interpreter with parameter Θg = (θΨ, θh) and some input x, the relevance score of an166

attribute φj is defined regarding the prediction g(x) = f(x) = ŷ. Denoting ŷ ∈ Y the index of the167

predicted class and wj,ŷ ∈ W the coefficient associated to this class, the contribution of attribute168

φj to unnormalized score of class ŷ is αj,ŷ,x = φj(x).wj,ŷ. The relevance score is computed by169

normalizing contribution α as rj,x =
αj,ŷ,x

maxi |αi,ŷ,x| . An attribute φj is considered as relevant for a170

local prediction if it is both activated and effectively used in the linear (logistic) model. The notion171

of relevance of an attribute for a sample is extended to its "overall" importance in the prediction172

of any class c. This can be done by simply averaging relevance scores from local interpretations173

over a random subset or whole of the training set S, where predicted class is c. Thus, we have:174

rj,c = 1
|Sc|

∑
x∈Sc rj,x, Sc = {x ∈ S|ŷ = c}. Now, we can introduce the notions of local and global175

interpretations that the interpreter will provide.176

Definition 1 (Global and Local Interpretation) For a prediction network f , the global interpre-177

tation G(g, f) provided by an interpreter g, is the set of class-attribute pairs (c, φj) such that their178

global relevance rj,c is greater than some threshold 1/τ, τ > 1. A local interpretation for a sample179

x provided by an interpreter g of f denoted L(x, g, f) is the set of attribute functions φj with local180

relevance score rj,x greater than some threshold 1/τ, τ > 1.181

It is important to note that these definitions do not prejudge the quality of local and global interpreta-182

tions. Next, we convert desirable properties of the interpreter into specific loss functions.183
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3.3 Learning by imposing interpretability properties184

Although converting desirable interpretability properties into losses is shared by several by-design185

approaches [11, 37], there is no consensus on these properties. We propose below a minimal set186

of penalties which are suitable for the proposed architecture and sufficient to provide relevant187

interpretations.188

Fidelity to Output. The output of the interpreter g(x) should be "close" to f(x) for any x. This can189

be imposed through a cross-entropy loss:190

Lof (f, g,S) = −
∑
x∈S

h(Ψ(fI(x)))T log(f(x))

Conciseness and Diversity of Interpretations. For any given sample x, we wish to get a small191

number of attributes in its associated local interpretation. This property of conciseness should make192

the interpretation easier to understand due to fewer attributes to be analyzed and promote the "high-193

level" character in the encoded concepts. However, to encourage better use of available attributes194

we also expect activation of multiple attributes across many randomly selected samples. We refer195

to this property as diversity. This is also important to avoid the case of attribute functions being196

learnt as class exclusive (for eg. reshuffled version of class logits). To enforce these conditions we197

utilize notion of entropy defined for real vectors proposed by Jain et al [23] to solve problem of198

efficient image search. For a real-valued vector v, the entropy is defined as E(v) = −
∑
i pi log(pi),199

pi = exp(vi)/(
∑
i exp(vi)).200

Conciseness is promoted by minimizing E(Ψ(fI(x))) and diversity is promoted by maximizing201

entropy of average Ψ(fI(x)) over a mini-batch. Note that this can be seen as encouraging the202

interpreter to find a sparse and diverse coding of fI(x) using the function Ψ. Since entropy-based203

losses have inherent normalization, they do not constrain the magnitude of the attribute activation.204

This often leads to poor optimization. Thus, we also minimize the `1 norm ‖Ψ(fI(x))‖1 (with205

hyperparameter η) to avoid it. Note that `1-regularization is a common tool to encourage sparsity and206

thus conciseness, however we show in the experiments that entropy provides a more effective way.207

Lcd(f, g,S) = −E(Φ̄S)+
∑
x∈S
E(Ψ(fI(x)))+

∑
x∈S

η‖Ψ(fI(x))‖1 with Φ̄S =
1

|S|
∑
x∈S

Ψ(fI(x))

Fidelity to Input. To encourage encoding high-level patterns related to input in Φ(x), we use208

a decoder network d : RJ → X that takes as input the dictionary of attributes Ψ(fI(x)) and209

reconstructs x. A similar penalty has previously been applied by [4].210

Lif (f, g, d,S) =
∑
x∈S

(d(Ψ(fI(x)))− x)2

Note that one can modify Lif with other reconstruction losses as well (such as `1-reconstruction).211

Given the proposed loss terms, the loss for interpretability writes as follows:212

Lint(f, g, d,S) =βLof (f, g,S) + γLif (f, g, d,S) + δLcd(f, g,S)

where β, γ, δ are non-negative hyperparameters. The total loss to be minimized L = Lpred + Lint,213

where the prediction loss, Lpred, is the well-known cross-entropy loss.214

Let us denote Θ = (θf , θd, θΨ, θh) the parameters of these networks. Learning the models f , Ψ, h215

and d boils down to learning Θ. In practice, introducing all the losses at once often leads to very216

poor optimization. Thus, we follow the procedure described in Alg. 1. We train the networks with217

Lpred,Lif for the first two epochs and gain a reasonable level of accuracy. From the third epoch we218

introduce Lof and from the fourth epoch we introduce Lcd loss.219

4 Understanding encoded concepts in FLINT220

Once the predictor and interpreter are jointly learnt, interpretation can be given at the global and221

local levels as in Def. 1. A key component to grasp the interpretations is to understand the concept222

encoded by each individual attribute function φj , previously defined in Eq. 2. In this work, we focus223

on image classification and propose to represent an encoded concept as a set of visual patterns in the224

input space which highly activate φj . We present a pipeline to generate visualizations for global and225

local interpretation by adapting various previously proposed tools [4, 38].226
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Algorithm 1 Learning algorithm for FLINT

1: Input: S & parameters Θ = (θf , θd, θΨ, θh) & hyperparameters: β0, γ0, δ0, η0 & number of
batches B & number of training epochs Nepoch.

2: Random initialization of parameter Θ0

3: Θ1← Train (S,Θ0, β = 0, γ0, δ = 0, η = 0, B, 2) {% Trains 2 epochs with Lpred,Lif}
4: Θ2← Train (S,Θ1, β = β0, γ0, δ = 0, η = 0, B, 1) {% Trains 1 epoch with Lpred,Lif ,Lof}
5: Θ̂← Train (S,Θ2, β0, γ0, δ0, η0, B,Nepoch − 3) {% Trains with all losses}
6: Output: Θ̂ = (θ̂f , θ̂d, θ̂Ψ, θ̂h)

Algorithm 2 Visualization of global interpretation

1: Input: (class,attribute):(c, φj) & subset size:l & training set:Sn & AM+PI params:(λφ, λtv, λbo)
2: Sc = {x|(x, c) ∈ Sn}
3: MAS(c, φj , l)← arg maxM⊂Sc,|M|=l

∑
xi∈M φj(x)

4: FOR xk ∈ MAS(c, φj , l)
5: xkvis ← AM+PI(xk, λφ, λtv, λbo)
6: ENDFOR
7: Output:{x1

vis, . . . , x
l
vis}, MAS(c, φj , l)

Visualization of global interpretation. Given any class-attribute pair (c, φj) in the global interpre-227

tation G(g, f), we first select a small subset of training samples from class c that maximally activate228

φj . This set of samples is referred to as maximum activating samples and denoted MAS(c, φj , l)229

where l is the size of the subset (chosen as 3 in the experiments). Although, MAS reveal some230

information about the encoded concept, it might not be apparent what aspect of these samples causes231

activation of φj . We thus propose further analyzing each element in MAS through tools that enhance232

the detected concept. This results in a much better understanding. The primary tool we employ is a233

modified version of activation maximization [38], which we refer to as activation maximization with234

partial initialization (AM+PI).235

Given a maximum activating sample x′ ∈ MAS(c, φj , l), the key idea behind AM+PI is to synthesize236

appropriate input via optimization, that maximally activates φj . We thus optimize a common activa-237

tion maximization objective [38]: arg maxx λφφj(x)− λtvTV(x)− λboBo(x) , where TV(.),Bo(.)238

are regularization terms. However, we initialize the procedure by low-intensity version of sample x′.239

This makes the optimization easier with the detected concept weakly present in the input. This also240

allows the optimization to “fill” the input to enhance the encoded concept. As an output, we obtain a241

map adapted to x′, that strongly activates φj . Complete details of the AM+PI procedure are given in242

supplementary (Sec. S.2). Visualization of a class-attribute pair is summarized in Alg. 2. Alternative243

useful tools are discussed in the supplementary (Sec. S.2).244

Local analysis. Given any test sample x0, one can determine its local interpretation L(x0, f, g),245

the set of relevant attribute functions accordingly to Def. 1. To visualize a relevant attribute246

φj ∈ L(x0, f, g), we can repeat the AM+PI procedure with initialization using low-intensity version247

of x0 to enhance concept detected by φj in x0. Note that the understanding built about any attribute248

function φj via global analysis, although not essential, can still be helpful to understand the generated249

AM+PI maps during local analysis, as these maps are generally similar.250

5 Numerical Experiments for FLINT251

Datasets and Networks. We consider 4 datasets for experiments, MNIST [32], FashionMNIST252

[48], CIFAR-10 [29], and a subset of QuickDraw dataset [20]. Our experiments include 2 kinds253

of architectures for predictor f : (i) LeNet-based [33] network for MNIST, FashionMNIST, and (ii)254

ResNet18-based [21] network for QuickDraw, CIFAR. We select one intermediate layer for LeNet255

based network and two for ResNet based networks, from the last few convolutional layers as they256

are expected to capture higher-level features. We set the number of attributes J = 25 for MNIST,257

FashionMNIST, J = 24 QuickDraw and J = 36 for CIFAR. Further details about the QuickDraw258

subset, precise architecture, hyperparameter choices (with reasons for choice of hidden layers, number259

of attributes) and optimization details are available in supplementary (Sec. S.2)260
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Accuracy (in %) Fidelity (in %)

BASE-f SENN PrototypeDNN FLINT-f FLINT-g LIME VIBI FLINT-g

MNIST 98.9±0.1 98.4±0.1 99.2 98.9±0.2 98.3±0.2 95.6±0.4 96.6±0.7 98.7±0.1
FashionMNIST 90.4±0.1 84.2±0.3 90.0 90.5±0.2 86.8±0.4 67.3±1.3 88.4±0.3 91.5±0.1
CIFAR10 84.7±0.3 77.8±0.7 – 84.5±0.2 84.0±0.4 31.5±0.9 65.5±0.3 93.2±0.2
QuickDraw 85.3±0.2 85.5±0.4 – 85.7±0.3 85.4±0.1 76.3±0.1 78.6±0.4 90.8±0.4

Table 1: Results for accuracy (in %) and fidelity to FLINT-f on different datasets. BASE-f is system
trained with just accuracy loss. FLINT-f , FLINT-g denote the predictor and interpreter trained in our
framework. Mean and standard deviation of 4 runs for each system are reported

(a) (b) (c)

Figure 2: (a) Conciseness comparison of FLINT and SENN. (b) Effect of entropy losses on con-
ciseness of ResNet for QuickDraw for various `1-regularization levels. (c) Global class-attribute
relevances rj,c for QuickDraw (Left) and CIFAR10 (Right). 24 class-attribute pairs for QuickDraw
and 32 pairs for CIFAR10 have relevance rj,c > 0.2.

5.1 Quantitative evaluation of FLINT261

We evaluate and compare our model with other state-of-the-art systems regarding accuracy and inter-262

pretability. The evaluation metrics for interpretability [15] are defined to measure the effectiveness263

of the losses proposed in Sec. 3.3. Our primary method for comparison, wherever applicable, is264

SENN, as it is an interpretable network by design with same units for interpretation as FLINT. Other265

baselines include PrototypeDNN [35] for predictive performance, LIME [40] and VIBI [8] for fidelity266

of interpretations. Details of their implementation are in supplementary (Sec. S.2).267

Predictive performance of FLINT. There are two goals to validate related to predictor trained with268

FLINT (denoted FLINT-f ), (i) Jointly training f with g and backpropagating loss term Lint does269

not negatively impact performance, and (ii) The achieved performance is comparable with other270

similar interpretable by-design models. For the former we compare the accuracy of FLINT-f with271

same predictor architecture trained just with Lpred (denoted by BASE-f ). For the latter goal we272

compare accuracy of FLINT-f with accuracy of SENN and another interpretable network by design273

PrototypeDNN [35] that does not use input attribution for interpretations. Note that PrototypeDNN274

requires non-trivial changes to the model for running on more complex datasets, CIFAR10 and275

QuickDraw. To avoid any unfair comparison we skip these results. The accuracies are reported in276

Tab. 1. They indicate that training f within FLINT does not result in any significant accuracy loss on277

any dataset. Also, FLINT is competitive with other interpretable by-design models.278

Fidelity of Interpreter. The fraction of samples where prediction of a model and its interpreter279

agree, i.e predict the same class, is referred to as fidelity. It is a commonly used metric to measure280

how well an interpreter approximates a model [8, 31]. Note that, typically, for interpretable by design281

models, fidelity cannot be measured as they only consider a single model. However, to validate that282

the interpreter trained with FLINT (denoted as FLINT-g) achieves a reasonable level of agreement283

with FLINT-f , we benchmark its fidelity against a state-of-the-art black-box explainer VIBI [8] and284

a traditional method LIME [40]. The results for this are provided in Tab. 1 (last three columns).285

FLINT-g consistently achieves higher fidelity. Even though it is not a fair comparison as other systems286

are black-box explainers and FLINT-g accesses intermediate layers, they clearly show that FLINT-g287

demonstrates high fidelity to FLINT-f .288

Conciseness of interpretations. We evaluate conciseness by measuring the average number of289

important attributes in generated interpretations. For a given sample x, it can be computed as number290
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MAS 1 AM+PI 1 MAS 2 AM+PI 2 MAS 3 AM+PI 3

QuickDraw

MNIST

CIFAR10  Dog --

 Lion --

 Apple -- Dog --

 Airplane --

 One --

 One --

MAS 1 AM+PI 1 MAS 2 AM+PI 2 MAS 3 AM+PI 3

FashionMNIST

 Sandal --

 Pullover --

 Truck --

Figure 3: Example class-attribute pair analysis on all datasets, with global relevance rj,c > 0.2. Each
row contains 3 MAS with corresponding AM+PI outputs

INPUT AM+PI OUTPUTSRELEVANT
ATTRIBUTES

FashionM

CIFAR10

QuickDraw

TRUCK CAR

Test sample

AM+PI map

CAR CAR TRUCK

PULLOVER COAT COAT SHIRT SHIRT

Test sample

AM+PI map

Figure 4: (Left) Local interpretations for test samples. Top 3 attributes with corresponding AM+PI
output are shown. True labels for inputs are: Pullover, Airplane, Apple, Dog. (Right) Examples of
attribute functions detecting same part across various test samples. For each sample, their relevance
is greater than 0.8. True labels of samples indicated above them.

of attributes φj with rj,x greater than a threshold 1/τ, τ > 1, i.e. CNSg,x = |{j : |rj,x| > 1/τ}|.291

For different thresholds 1/τ , we compute the mean of CNSg,x over test data to estimate conciseness292

of g, CNSg. Lower conciseness indicates need to analyze a lower number of attributes on an293

average. SENN is the only other system for which this curve can be computed. We thus compare294

the conciseness of SENN with FLINT on all four datasets. Fig. 2a depicts the same. It can be easily295

observed that FLINT produces lot more concise interpretations compared to SENN. Moreover, SENN296

even ends up with majority of concepts being considered relevant for lower thresholds (higher τ ).297

Entropy vs `1 regularization. We validate the effectiveness of entropy losses by computing concise-298

ness curve at various levels of `1 regularization strength, with and without entropy, for ResNet with299

QuickDraw. This is reported in Fig. 2b. The figure confirms that using the entropy-based loss is more300

effective in inducing conciseness of explanations compared to using just `1-regularization, with the301

difference being close to use of 1 attribute less when entropy losses are employed.302

Importance of attributes. Additional experiments evaluating meaningfulness of attributes by shuf-303

fling them and observing the effect (for FLINT and SENN) are given in supplementary (Sec. S.2).304

5.2 Qualitative analysis305

Global interpretation. Fig. 2c depicts the generated global relevances rj,c for all class-attribute306

pairs on QuickDraw and CIFAR. Each class-attribute pair with ‘high’ relevance needs to be analyzed307

as part of global analysis. Some example class-attribute pairs, with high relevance, are visualized in308

Fig. 3. For each pair we select MAS of size 3 and also show their AM+PI outputs. As mentioned309

before, simply analyzing MAS reveals useful information about the encoded concept. For instance,310

based on MAS, φ15, φ19 on MNIST, relevant for class ‘One’, clearly seem to activate for vertical and311

diagonal strokes respectively. However, AM+PI outputs give deeper insights about the concept by312

revealing more clearly what parts of input activate an attribute function. For eg., while MAS indicate313

that φ5 on FashionMNIST activates for heels (one type of ‘Sandal’), φ2 on CIFAR10 activates for314

white dogs, it is not clear what part the attribute focuses on. AM+PI outputs indicate that φ2 focuses315

on the area around eyes and nose (the most enhanced regions), φ5 primarily detects a thin diagonal316

stroke of the heel surrounded by empty space. AM+PI outputs generally become even more important317

for attributes relevant for multiple classes. One such example is the function φ5 on QuickDraw,318
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relevant for both ‘Dog’ and ‘Lion’. It activates for very similar set of strokes for all samples, as319

indicated by AM+PI maps. For ‘Dog’ this corresponds to ears and mouth and for ‘Lion’ it corresponds320

to the mane. Other such attribute functions in the figure include φ24 on FashionMNIST, relevant for321

‘Pullover’, ‘Coat’ and ‘Shirt’ which detects long sleeves and φ29 on CIFAR10, relevant for ‘Trucks’,322

‘Cars’ and primarily detects wheels and parts of upper body. Further visualizations including those of323

other relevant classes for φ24, φ29 and global relevances are available in supplementary (Sec. S.2).324

Local interpretation. Fig. 4 (left) displays the local interpretation visualizations for test samples. f325

and g both predict the true class in all the cases. We show the top 3 relevant attributes to the prediction326

with their relevances and their corresponding AM+PI outputs. Based on the AM+PI outputs it can be327

observed that the attribute functions generally activate for patterns corresponding to the same concept328

as inferred during global analysis. This can be easily seen for attribute functions present in both329

Fig. 3, 4 (left). This is further illustrated by Fig. 4 (right) where we illustrate AM+PI outputs for330

two attributes from Fig. 3. These functions are relevant for more than one class and detect the same331

concept across various test samples, namely long sleeves for φ24 and primarily wheels for φ29.332

5.3 Subjective evaluation333

We conducted a survey based subjective evaluation with QuickDraw dataset for FLINT with 20334

respondents. We selected 10 attributes, covering 17 class-attribute pairs from the QuickDraw dataset.335

For each attribute we present the respondent with our visualizations (3 MAS and AM+PI outputs)336

for each of its relevant classes along with a textual description. We ask them if the description337

meaningfully associates to patterns in the AM+PI outputs. They indicate level of agreement with338

choices: Strongly Agree (SA), Agree (A), Disagree (D), Strongly Disagree (SD), Don’t Know339

(DK). Descriptions were manually generated by our understanding of encoded concept for each340

attribute. 40% incorrect descriptions were carefully included to ensure informed responses. These341

were forcefully related to the classes shown to make them harder to identify. Results – for correct342

descriptions: 77.5% – SA/A, 10.0% – DK, 12.5% – D/SD. For incorrect descriptions: 83.7% – D/SD,343

7.5% – DK, 8.8% – SA/A. These results clearly indicate that concepts encoded in FLINT’s learnt344

attributes are understandable to humans. Survey details are given in supplementary (Sec. S.2).345

6 Specialization of FLINT to post-hoc interpretability346

While interpretability by design is the primary goal of FLINT, it can be specialized to provide a post-347

hoc interpretation when a classifier f̂ is already available. The Post-hoc interpretation learning348

(see for instance [40]) comes as a special case of SLI and is defined as follows. Given a classifier349

f̂ ∈ F and a training set S, the goal is to build an interpreter of f̂ by solving:350

Problem 2: arg min
g∈Gf̂

Lint(f̂ , g,S).

With FLINT, we have g(x) = h ◦ Φ(x) and Φ(x) = Ψ ◦ f̂I(x) for a given set of accessible hidden351

layers I and a attribute dictionary size J . Learning can be performed by specializing Alg. 1 with352

slight modification of replacing Θ as Θ = (θΨ, θh, θd) while θf̂ is fixed and eliminating Lpred from353

training loss L.354

Experimental results for post-hoc FLINT: We validate this ability of our framework by interpreting355

fixed models trained only for accuracy, i.e, BASE-f models from section 5.1. Even after not tuning356

the internal layers of f , the system is still able to generate high-fidelity and meaningful interpretations.357

Fidelity comparisons against VIBI, class-attribute pair visualizations and experimental details are358

available in supplementary (Sec. S.3).359

7 Conclusion360

FLINT is a novel framework for learning a predictor network and its interpreter network with361

dedicated losses. A potential attractive use consists in retaining only the interpreter model as the final362

interpretable prediction model of reduced complexity. Further works will investigate this direction363

and the enforcement of additional constraints on attribute functions to encourage invariance under364

various transformations. Eventually FLINT can be extended to other tasks or modalities other than365

images in particular by adapting the design of attributes and the pipeline to understand them.366
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8 Paper Checklist367

1. For all authors...368

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s369

contributions and scope? YES370

(b) Did you describe the limitations of your work? YES. Partially highlighted in conclusion,371

more detailed version in supplementary372

(c) Did you discuss any potential negative societal impacts of your work? YES. Please373

refer to the supplementary374

(d) Have you read the ethics review guidelines and ensured that your paper conforms to375

them? YES376

2. The paper does NOT contain any theoretical results377

3. If you ran experiments...378

(a) Did you include the code, data, and instructions needed to reproduce the main experi-379

mental results (either in the supplemental material or as a URL)? YES380

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they381

were chosen)? YES. Please refer to supplementary for this. All details are covered382

(c) Did you report error bars (e.g., with respect to the random seed after running experi-383

ments multiple times)? YES. Mean and standard deviation for metrics on 4 runs are384

reported.385

(d) Did you include the total amount of compute and the type of resources used (e.g., type386

of GPUs, internal cluster, or cloud provider)? YES. Please refer to supplementary387

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...388

(a) If your work uses existing assets, did you cite the creators? YES389

(b) Did you mention the license of the assets? YES390

(c) Did you include any new assets either in the supplemental material or as a URL? YES391

(d) Did you discuss whether and how consent was obtained from people whose data you’re392

using/curating? All the data/code we include in supplementary is open-source.393

(e) Did you discuss whether the data you are using/curating contains personally identifiable394

information or offensive content? The data we are using does NOT contain personally395

identifiable information or offensive content.396

5. If you used crowdsourcing or conducted research with human subjects...397

(a) Did you include the full text of instructions given to participants and screenshots, if398

applicable? YES399

(b) Did you describe any potential participant risks, with links to Institutional Review400

Board (IRB) approvals, if applicable? NA401

(c) Did you include the estimated hourly wage paid to participants and the total amount402

spent on participant compensation? Ans: The survey was completely voluntary for the403

participants404
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