
Under review as a conference paper at ICLR 2021

SIMPLE SPECTRAL GRAPH CONVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Convolutional Networks (GCNs) have drawn significant attention and be-
come leading methods for learning graph representations. The most GCNs suf-
fer the performance loss when the depth of the model increases. Similarly to
CNNs, without specially designed architectures, the performance of a network
degrades quickly with increased depth. Some researchers argue that the required
neighbourhood size and neural network depth are two completely orthogonal as-
pects of graph representation. Thus, several methods extend the neighbourhood
by aggregating k-hop neighbourhoods of nodes while using shallow neural net-
works. However, these methods still encounter oversmoothing, high computation
and storage costs. In this paper, we use a modified Markov Diffusion Kernel to
derive a variant of GCN called Simple Spectral Graph Convolution (S2GC). Our
spectral analysis shows that our simple spectral graph convolution used in S2GC
is a trade-off of low-pass and high-pass filter which captures the global and local
contexts of each node. We provide two theoretical claims which demonstrate that
we can aggregate over a sequence of increasingly larger neighborhoods compared
to competitors while limiting severe oversmoothing. Our experimental evalua-
tion demonstrates that S2GC with a linear learner is competitive in text, node and
graph classification tasks. Moreover, S2GC is comparable to other state-of-the-art
methods for node clustering and community prediction tasks.

1 INTRODUCTION

In the past few years, the rise and application of deep learning have successfully promoted the
research of computer vision and data mining. Although these deep learning methods have been
applied to extract the features on the Euclidean lattice (spatial data) with great success, the data
in many practical scenarios lies on non-Euclidean structures. Processing non-Euclidean structures
is a challenge for deep learning methods. By defining a convolution operator between the graph
and signal, Graph Convolutional Networks (GCNs) generalize Convolutional Neural Networks
(CNNs) to graph-structured inputs which contain attributes. Message Passing Neural Networks
(MPNNs) (Gilmer et al., 2017) unify the graph convolution as two functions: the transformation
function and the aggregation function. MPNN iteratively propagates node features based on the
adjacency structure of graph in a number of rounds.

Despite their enormous success in many applications like social media, traffic analysis, biology,
recommendation systems and even computer vision, most of the current GCN models use shallow
architectures because many of the recent models such as GCN (Kipf & Welling, 2016) achieve their
best performance with 2-layer models. In other words, 2-layer GCN models aggregate nodes in two-
hops neighbourhood and thus have no ability to extract information in k-hops neighbourhoods for
k>2. Moreover, stacking more layers and adding a non-linearity tends to degrade the performance
of these models. Such a phenomenon is called oversmoothing (Li et al., 2018a), which suggests that
as the number of layers increases, the representations of the nodes in GCNs are inclined to converge
to a certain value and become less distinct from one another. Even adding residual connections,
an effective trick for training very deep neural networks in computer vision, merely slows down
the oversmoothing issue (Kipf & Welling, 2016) in GCNs. It appears that deep GCN models gain
nothing but the performance degradation from the deep architecture.

One solution for that is only widening the aggregation function but keeping the same transformation
function because the required neighbourhood size and neural network depth can be regarded as two
orthogonal aspects of design. SGC (Wu et al., 2019) attempts to capture the context from K-hops

1

Under review as a conference paper at ICLR 2021

neighbours in the graph by applying the K-th power of the graph convolution matrix in a single
neural network layer. This scheme is also used for attributed graph clustering (Zhang et al., 2019).
However, SGC is also suffering from oversmoothing as K → ∞ as shown in Theorem 1. PPNP
and APPNP (Klicpera et al., 2019a) replace the power of the graph convolution matrix with the
Personalized PageRank matrix to solve the oversmoothing problem. Although APPNP relieve the
oversmoothing problem, it employs a non-linear operation which requires costly computation of the
derivative of the filter due to the non-linearity over the multiplication of feature matrix with learnable
weights. In contrast, we show that our approach enjoys a free derivative computed in the feed-
forward step thanks to the use of linear model. Furthermore, APPNP aggregates over multiple k-hop
neighborhoods but the weighting scheme favors either global or local context making it difficult if
not impossible to find the balancing parameter. In contrast, our approach does aggregate over k-hop
neighborhoods in a balanced manner as shown later in the text.

GDC (Klicpera et al., 2019b) further extends APPNP by generalizing Personalized PageRank (Page
et al., 1999) to an arbitrary graph diffusion process. GDC, technically, has stronger expressive
power than SGC (Wu et al., 2019), PPNP and APPNP (Klicpera et al., 2019a) but it leads to a
dense transition matrix which makes the computation and space storage intractable for large graphs
although authors suggest that the shrinkage method can be used to sparsify the generated transition
matrix by ignoring small values.

To solve the above issues, we propose a Simple Spectral Graph Convolution (S2GC) network for
node clustering (semi-supervised and unsupervised setting), node classification and graph classifi-
cation. By analyzing Markov Diffusion Kernel (Fouss et al., 2012), we obtain a very simple and
effective filter: we aggregate k-step diffusion matrices over k = 0, · · · ,K steps which is equivalent
to aggregating over neighborhoods of various sizes. Moreover, we show that our design incorporates
larger neighborhoods compared to SGC thus coping better with oversmoothing. We explain that lim-
iting over-dominance of the largest neighborhoods in the aggregation step is a desired approach to
limit oversmoothing while preserving large context of each node. We also show that in spectral
analysis that S2GC is a trade-off between the low- and high-pass filters which leads to capturing the
global and local contexts of each node. Moreover, we show how S2GC and APPNP (Klicpera et al.,
2019a) are related and explain why S2GC captures a range of neighborhoods better than APPNP.
Our experimental results include node clustering, unsupervised and semi-supervised node classifi-
cation, node property prediction and supervised text classification. We show that S2GC is highly
competitive often significantly outperforming state-of-the-art methods.

2 PRELIMINARIES

Notations. Let G = (V,E) be a simple and connected undirected graph with n nodes and m
edges. We use {1, · · · , n} to denote the node index of G, and dj denote the degree of node j in
G. Let A be the adjacency matrix and D the diagonal degree matrix. Let Ã = A + In denote
the adjacency matrix with added self-loops and the corresponding diagonal degree matrix D̃ where
In ∈ Sn++ is an identity matrix. Finally, let X ∈ Rn×d denote the node feature matrix and each
node v is associated with a d-dimensional feature vector Xv . The normalized graph Laplacian
matrix is defined as L = In−D−1/2AD−1/2 ∈ Sn+, a symmetric positive semidefinite matrix with
eigendecomposition UΛU>. Here Λ is a diagonal matrix of the eigenvalues of L, and U ∈ Rn×n
is a unitary matrix that consists of the eigenvectors of L.

Spectral Graph Convolution (Defferrard et al., 2016). We consider spectral convolutions on
graphs defined as the multiplication of a signal x ∈ Rn with a filter gθ parameterized by θ ∈ Rn in
the Fourier domain:

gθ(L) ∗ x = Ug∗θ(Λ)U>x, (1)

where the parameter θ ∈ Rn is a vector of spectral filter coefficients. We can understand gθ as a
function operating on eigenvalues of L, that is g∗θ(Λ). To avoid eigendecomposition, gθ(Λ) can be
approximated by a truncated expansion in terms of Chebyshev polynomials Tk(Λ) up to the K-th
order (Defferrard et al., 2016):

g∗θ(Λ) ≈
K−1∑
k=0

θkTk(Λ̃), (2)

2

Under review as a conference paper at ICLR 2021

with a rescaled Λ̃ = 1
2λmax

Λ − In where λmax denotes the largest eigenvalue of L and θ ∈ RK is
now a vector of Chebyshev coefficients.

Vanila Graph Convolutional Network (GCN) (Kipf & Welling, 2016). The vanilla GCN is a
first-order approximation of spectral graph convolutions. If one sets K = 1, θ0 = 2, and θ1 = −1
for Eq. 2 they obtain the convolution operation gθ(L) ∗ x = (I + D−1/2AD−1/2)x. Finally,
by the renormalization trick, replacing the matrix I + D−1/2AD−1/2 by a normalized version
T̃ = D̃−1/2ÃD̃−1/2 = (D + In)−1/2(A + In)(D + In)−1/2 leads to the GCN layer with σ, a
non-linear function, e.g. ReLU:

H(l+1) = σ(T̃H(l)W(l)), (3)

Graph Diffusion Convolution (GDC) (Klicpera et al., 2019b). A generalized graph diffusion is
given by the diffusion matrix:

S =

∞∑
k=0

θkT
k, (4)

with the weighting coefficients θk and the generalized transition matrix T. Eq. 4 can be regarded
as related to the Taylor expansion of matrix-valued functions. Thus, the choice of θk and Tk must
at least ensure that Eq. 4 converges. Klicpera et al. (2019b) provide two special cases as low-pass
filters, ie. heat kernel and the kernel based on random walk with restarts. If S denote the adjacency
matrix and D be the diagonal degree matrix of S then the corresponding graph diffusion convolution
is defined as D−1/2SD−1/2x. Note that θk can be a learnable parameter, or it can be chosen in one
or another way. Many works use expansion in Eq. 4 but different choices of θk realise very different
filters making each method unique. One example may be Chebynet (Zhang et al., 2019).

Simple Graph Convolution (SGC) (Wu et al., 2019). A classical MPNN (Gilmer et al., 2017)
averages in each layer the hidden representations among 1-hop neighbors. This implies that each
node in the k-th layer obtains feature information from all nodes that are k-hops away in the graph.
By hypothesizing that the non-linearity between GCN layers is not critical, SGC captures informa-
tion from k-hops neighbourhood in the graph by applying the K-th power of the transition matrix
in a single neural network layer. The SGC can be regarded as a special case of GDC without non-
linearity and without the normalization by D−1/2 if we set θk = 1 and θi<K = 0 for Eq. 5, and
T = T̃:

Ŷ = softmax(T̃KXW). (5)
Although SGC is an efficient and effective method, increasingKleads to oversmoothing. Thus, SGC
uses similarK number of layers as GCN. We provide Theorem 1 to demonstrate that oversmoothing
is a result of convergence to the stationary distribution in graph diffusion as time t→∞.
Theorem 1. (Chung & Graham, 1997) Let λ2 denote second largest eigenvalue of transition matrix
T̃ = D−1A of a non-bipartite graph, p(t) be the probability distribution vector and π the station-
ary distribution. If walk starts from the vertex i , pi(0) = 1, then after t steps for every vertex:

|pj(t)− πj | ≤
√
dj
di
λt2, (6)

APPNP. Klicpera et al. (2019a) proposed APPNP which uses Personalized PageRank to derive a
fixed filter of order K. Let fθ(X) denote the output of a two-layer fully connected neural network
on the feature matrix X, the PPNP model is defined as H = αIn− (1−α)T̃−1fθ(X). To avoid cal-
culating the inverse of matrix T̃, Klicpera et al. (2019a) also proposes Approximate PPNP (APPNP)
which replaces the costly inverse with an approximation derived by the truncated power iteration:

H(l+1) = (1− α)T̃H(l) + αH(0), (7)

where H(0) = fθ(X) = ReLU(XW). By decoupling the feature transformation and propagation
steps, PPNP and APPNP aggregate information from multi-hop neighbors.

3 METHODOLOGY

In this section, firstly we briefly discuss the spectral analysis and graph partitioning, and conclude
the small eigenvalues of a Laplacian matrix control global clustering which partitions the graph into

3

Under review as a conference paper at ICLR 2021

(a) (b)

Figure 1: (a) Function f(λ) = 1
K

∑K
k=0 λ

k with λ ∈ [−1, 1], K ∈ {1, 4, 8, 16}; (b) Sorted by
index, eigenvalues of D−1/2AD−1/2 and push-forward eigenvalues f(Λ) = 1

K

∑K
k=0 Λk on Cora

network (K = 16).

a few of large clusters. Secondly, we analyze the Markov Diffusion Kernel (Fouss et al., 2012) and
note that the corresponding feature mapping function acts as a low-pass filter. Finally, based on the
feature mapping function we present our Simple Spectral Graph Convolution network.

3.1 SPECTRAL ANALYSIS AND GRAPH PARTITIONING

Our design follows Claims I and II described in Section A.3.1 which includes their proofs.

Claim I. Our filter, by design, will give the highest weight to the closest neighborhood of a node as
neighborhoods N of diffusion steps k = 0, · · · ,K obey: N (T̃0) ⊆ N (T̃1) ⊆ · · · ⊆ N (T̃K) ⊆
N (T̃∞). That is, smaller neighbourhoods belong to larger neighbourhoods too.

Claim II. As K→∞, the ratio of energies contributed by S2GC to SGC is 0. Thus, the energy of
infinite-dimensional receptive field (largest k) will not dominate the sum energy of our filter. Thus,
S2GC can incorporate larger receptive fields without overbearing contributions of smaller receptive
fields. This is substantiated by Table 8 where we achieve K=16 while SGC achieves K=4.

3.2 MARKOV DIFFUSION KERNEL

Two nodes are considered similar when they are diffused in a similar way through the graph, and
therefore when they influence the other nodes in a similar manner (Fouss et al., 2012). In other
words, two nodes are close if they are in the same cluster which has a consistent local structure.
More precisely, the diffusion distance at time K between nodes i and j is defined as follows:

dij(K) = ‖xi(K)− xj(K)‖22, (8)
where the average visiting rate xi(K) after K steps for a process that started at time k = 0 is
computed as follows:

xi(K) =
1

K

K∑
k=1

Tkxi(0). (9)

By defining Z(K) = 1
K

∑K
k=1 Tk, we reformulate Eq. 8 as a metric given as:

dij(K) = ‖Z(K)(xi(0)− xj(0))‖22. (10)
The underlying feature map of Markov Diffusion Kernel (MDK) is given as Z(K)xi(0) for node i.

The effect of the linear projection Z(K) (filter) acting on spectrum as f(λ) = 1
K

∑K
k=0 λ

k (we sum
from 0 to include self-loops) is plotted in Figure 1, from which we observe the following properties:
(i) Z(K) preserves leading (large) eigenvalues of T and (ii) the higher K is the stricter the low-pass
filter becomes but the filter also preserves the high frequency. In other words, as K grows, this filter
includes larger and larger neighborhood but also maintains the closest locality of nodes. Note that
L = I−T where L is the normalized Laplacian matrix and T is the normalized adjacency matrix.
Thus keeping large positive eigenvalues for T equals keeping small eigenvalues for L.

4

Under review as a conference paper at ICLR 2021

3.3 SIMPLE SPECTRAL GRAPH CONVOLUTION

Based on the aforementioned Markov Diffusion Kernel, we include self-loops and we propose the
Simple Spectral Graph Convolution (S2GC) network with a softmax after a linear layer:

Ŷ = softmax(
1

K

K∑
k=0

T̃kXW). (11)

As K → ∞, H =
∑∞
k=1 T̃k is the optimal diffused representation of the normalized Laplacian

Regularization problem (Chapelle et al., 2006):

min
H

1

2

n∑
i,j=1

Ãij‖
hi√
di
− hj√

dj
‖22 + ‖hi − xi‖22, (12)

where each vector hi denotes the i-th row of H. However, the infinite expansion resulting from Eq.
12 in fact is suboptimal due to oversmoothing (Table 8 shows this). In contrast, we include in Eq. 11
a self-loop T̃ 0 = I, the α ∈ [0, 1] parameter (Table 9 evaluates its impact) to balance the node’s self
information vs. consecutive neighborhoods, and we consider finite K. We generalize the Eq. 11 as:

Ŷ = softmax

(
1

K

K∑
k=1

(
(1− α) T̃kX + αX

)
W

)
. (13)

Relation of S2GC to GDC. GDC uses the entire filter matrix S (n×n) as S is then re-normalized
by its degree. Klicpera et al. (2019b) explain that ‘Most graph diffusions result in a dense matrix S.

In contrast, our approach is simply computed as (
∑K
k=1 T̃kX)W (plus self-loop) where X is of

size (n× d) where d� n, n and d being the number of nodes and features, respectively. The T̃τX

step is computed as T̃ · (T̃ · (· · · (T̃X) · · ·)) which requires t matrix-matrix multiplications between
matrices of size n×n and n× d. Thus, S2GC can handle extremely large graphs as it does not need
to sparsify dense filter matrices as GDC.

Relation of S2GC to APPNP. Let us define H0 = XW as we use the linear step in our S2GC.
Then and only then, for l = 0 and H0 = XW, APPNP expansion yields H1 = (1 − α)T̃XW +

αXW = ((1−α)T̃+αI)XW which is equal to our Z(1)XW = (
∑K
k=0 T̃k)XW = T̃X+X =

(T̃ + I)XW if α = 0.5, K=1, except for scaling (constant) of H1.

In contrast, for l = 1 and general case H0 = f(X; W), APPNP yields H2 = (1−α)2T̃2f(X; W)+

(1−α)αT̃f(X; W)+αf(X; W) from which is is easy to note specific weight coefficients (1−α)2,
(1 − α)α and α associated with 2-, 1-, and 0-hops. This shows that the APPNP expansion is very
different to S2GC expansion in Eq. 13. In fact, S2G and APPNP are only equivalent if α = 0.5,
K = 1 and a linear transformation f is used.

Moreover, APPNP assumes H0 = f(X; W) = ReLU(XW), thus their optimizer has to back-
propagate through f(X; W) to obtain ∂f

∂W and multiply this with the above expansion e.g.,
∂H2

∂W = (1− α)2T̃2f ′(X; W) + (1− α)αT̃f ′(X; W) + αf ′(X; W).

In contrast, we use the linear function XW. Thus, ∂XW
∂W yields X. Thus, the multiplication of our

expansion with X for the backprop step is in fact obtained in the forward pass which makes our
approx very fast for large graphs.

Relation of S2GC to AR. The AR filter (Li et al., 2019) uses the regularized Laplacian kernel
(Smola & Kondor, 2003) which differs from used by us (modified) Markov diffusion kernel. Specif-
ically, the regularized Laplacian kernel uses the negated Laplacian matrix yielding −L as follows:
KL =

∑∞
k=0 α

k(−L)k=(I+αL)−1 where L=I−T̃ which is related to the von Neumann diffusion
kernel KvN =

∑∞
k=0 α

kAk. In contrast, the Markov diffusion kernel KMD(K) = Z(K)ZT(K)

where Z(K)= 1
K

∑K
k=1 T̃k, where T̃=D−1/2AD−1/2.

5

Under review as a conference paper at ICLR 2021

Table 1: Computational and storage complexities O(·).
Stage Complexity APPNP GDC SGC S2GC
Forward Computation Cost K|E|d+Knd ≈ K|E|n K|E|d K|E|d+Knd
Propagation Storage Cost nd+ |E| ≈ n2 nd+ |E| nd+ |E|
Backward Computation Cost K|E|d 0 0 0
Propagation Storage Cost nd+ |E| 0 0 0

Table 2: Timing (seconds) on Cora, Citeseer, Pubmed and the large scale Open Graph Benchmark
(OGB) which includes Products.

methods Cora Citeseer Pubmed Products
SGC 0.45 0.55 0.78 9.8
APPNP 1.08 1.44 1.32 748
S2GC 0.67 0.81 0.79 11.4

Relation of S2GC to Jumping Knowledge Network (JKN). Xu et al. (2018b) combine interme-
diate node representations from each layer by concatenating them in the final layer. However, (Xu
et al., 2018b) use non-linear layers which results in a completely different network architecture and
the usual slower processing due to complex backpropagation chain.

3.4 COMPLEXITY ANALYSIS

For S2GC, the storage costs is O(|E| + nd), where |E| is the total edge count, nd relates to saving
the T̃kX during intermediate multiplications T̃ · (T̃ · (· · · (T̃X) · · ·)). The computational cost is
the O(K|E|d + Knd). Each sparse matrix multiplication T̃X costs |E|d and we need K such
multiplications while Knd realises summation over filters and nd is the cost of adding features X.

In contrast, the storage cost of GDC is approximately O(n2) and the computational cost is approx-
imately O(K|E|n) where n is the node numbers, K is the order of terms and |E| is the number of
graph edges. APPNP, SGC and S2GC have much lower cost than GDC. Kindly noteK|E|d� Knd
and n� d. We found that APPNP, SGC and S2GC have similar computational and storage costs in
the forward stage. Note that the d in APPNP is not the dimension of features X but f(X), which is
the number of categories.

For the backward stage including computing the gradient of the classification step, the computational
costs of GDC, SGC and S2GC are independent ofK and |E| because the graph convolution for these
methods does not require backprop (grad. is computed in the forward step). In contrast, APPNP
requires backprop as explained earlier.

Table 1 summarizes the computational and storage costs of several methods. Table 2 demonstrates
that APPNP is over 66× slower than S2GC on large scale Products dataset (OGB benchmark) de-
spite, for fairness, we use the same basic building blocks of PyTorch among compared methods.

4 EXPERIMENTS

In this section, we evaluate the proposed method on four different tasks: node clustering, community
prediction, semi-supervised node classification and text classification.

4.1 NODE CLUSTERING

We compare S2GC with three kinds of clustering methods: (i) Methods that only use node features:
k-means and spectral clustering (spectral-f) that constructs a similarity matrix with the node fea-
tures by a linear kernel. (ii) Structural clustering methods that only use graph structures: spectral
clustering (spectral-g) that takes the node adjacency matrix as the similarity matrix, DeepWalk (Per-
ozzi et al., 2014), and (iii) Attributed graph clustering methods that utilize both node features and
graph structures: Graph Autoencoder (GAE) and Graph Variational Autoencoder (VGAE) (Kipf
& Welling, 2016), and Adversarially Regularized Graph Autoencoder (ARGE), Variational Graph

6

Under review as a conference paper at ICLR 2021

Table 3: Clustering performance with three different metrics on four datasets.
Methods Input Cora Citeseer Pubmed Wiki

Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1%
k-means Feature 34.65 16.73 25.42 38.49 17.02 30.47 57.32 29.12 57.35 33.37 30.20 24.51
Spectral-f Feature 36.26 15.09 25.64 46.23 21.19 33.70 59.91 32.55 58.61 41.28 43.99 25.20
Spectral-g Graph 34.19 19.49 30.17 25.91 11.84 29.48 39.74 3.46 51.97 23.58 19.28 17.21
DeepWalk Graph 46.74 31.75 38.06 36.15 9.66 26.70 61.86 16.71 47.06 38.46 32.38 25.74
GAE Both 53.25 40.69 41.97 41.26 18.34 29.13 64.08 22.97 49.26 17.33 11.93 15.35
VGAE Both 55.95 38.45 41.50 44.38 22.71 31.88 65.48 25.09 50.95 28.67 30.28 20.49
ARGE Both 64.00 44.90 61.90 57.30 35.00 54.60 59.12 23.17 58.41 41.40 39.50 38.27
ARVGE Both 62.66 45.28 62.15 54.40 26.10 52.90 58.22 20.62 23.04 41.55 40.01 37.80
AGC Both 68.92 53.68 65.61 67.00 41.13 62.48 69.78 31.59 68.72 47.65 45.28 40.36
S2GC Both 69.60 54.71 65.83 69.11 42.87 64.65 70.98 33.21 70.28 52.67 49.62 44.31

Autoencoder (ARVGE) (Pan et al., 2018) and AGC (Zhang et al., 2019). To evaluate the clustering
performance, three performance measures are adopted: clustering Accuracy (Acc), Normalized Mu-
tual Information (NMI) and macro F1-score (F1). We run each method 10 times on four datasets:
Cora, CiteSeer, PubMed, and Wiki, and we report the average clustering results in Table 3, where
top-1 results are highlighted in bold. To adaptively select the order k, we use the clustering per-
formance metric: internal criteria based on the information intrinsic to the data alone Zhang et al.
(2019).

4.2 COMMUNITY PREDICTION

We supplement our social network analysis by using S2GC to inductively predict the community
structure on Reddit, a large scale dataset as shown in Table 11 which cannot be processed by the
vanilla GCN Kipf & Welling (2016) and GDC (Klicpera et al., 2019b) due to the memory issues.
On the Reddit dataset, we train S2GC with L-BFGS using no regularization, and we set K = 5 and
α = 0.05. We evaluate S2GC inductively according to protocol (Chen et al., 2018). We train S2GC
on a subgraph comprising only training nodes and test on the original graph. On all datasets, we tune
the number of epochs based on both convergence behavior and the obtained validation accuracy.

For Reddit, we compare S2GC to the reported performance of supervised and unsupervised variants
of GraphSAGE (Hamilton et al., 2017), FastGCN (Chen et al., 2018), SGC (Wu et al., 2019) and
DGI (Velickovic et al., 2019). Table 4 also highlights the setting of the feature extraction step
for each method. Note that S2GC and SGC involve no learning because they do not learn any
parameters to extract features. The logistic regression is used as a classifier for both unsupervised
and no-learning approaches to train with labels afterward.

4.3 NODE CLASSIFICATION

For the semi-supervised node classification task, we apply the standard fixed train-
ing/validation/testing split (Yang et al., 2016) on the Cora, Citeseer, and Pubmed datasets, with
20 nodes per class for training, 500 nodes for validation and 1,000 nodes for testing. For baselines,
We include three state-of-the-art shallow models: GCN (Kipf & Welling, 2016), GAT (Veličković
et al., 2017), FastGCN (Chen et al., 2018), APPNP (Klicpera et al., 2019a), Mixhop (Abu-El-Haija
et al., 2019), SGC (Wu et al., 2019), DGI (Velickovic et al., 2019) and GIN (Xu et al., 2018a). We
use the Adam SGD optimizer (Kingma & Ba, 2014) with a learning rate of 0.02 to train S2GC. We
set α = 0.05 and K = 16 on all datasets. To determine K and α, we used the MetaOpt package
Bergstra et al. (2015) with 20 steps to meta-optimize hyperparameters on the validation set of Cora.
Following that, we fixed K = 16 and α = 0.05 across all datasets so K and α are not tuned to
individual datasets at all. We will discuss the influence of α and K later.

To evaluate the proposed method on large scale benchmarks, we use ogbn-arxiv, ogbn-mag and
ogbn-products to demonstrate the comparison among the proposed method, SGC, GraphSage, GCN,
MLP and Softmax (multinomial Regression), as shown in Table 6. In these three datasets, our
method outperforms SGC consistently. In ogbn-arxiv and ogbn-products, we can observe our
method cannot outperforms GCN and GraphSage while MLP outperforms softmax classifier sig-
nificantly. Thus we argue in these two datasets, MLP plays a more important role than graph con-
volution. To prove this point, we also conduct the experiment (S2GC+MLP) that we use MLP to
replace the linear classifier and obtain a more powerful S2GC. In ogbn-mag, MLP barely helps our

7

Under review as a conference paper at ICLR 2021

Table 4: Test Micro F1 Score (%) averaged over
10 runs on Reddit. Performance of other models
are cited from their original papers.

Setting Model Test F1
SAGE-mean 95.0

Supervised SAGE-LSTM 95.4
SAGE-GCN 93.0

Unsupervised FastGCN 93.7
SAGE-GCN 90.8
DGI 94.0±0.001
SGC 94.9±0.001

No Learning S2GC 95.3±0.001

Table 5: Test accuracy (%) averaged over 10 runs
on citation networks.

methods Cora Citeseer Pubmed
GCN 81.4± 0.4 70.9± 0.5 79.0± 0.4
GAT 83.3± 0.7 72.6± 0.6 78.5± 0.3
FastGCN 79.8± 0.3 68.8± 0.6 77.4± 0.3
GIN 77.6± 1.1 66.1± 0.9 77.0± 1.2
DGI 82.5± 0.7 71.6± 0.7 78.4± 0.7
SGC 81.0± 0.02 71.9± 0.08 78.9± 0.03
MixHop 81.8±0.6 71.4±0.8 80.0±1.1
APPNP 83.3±0.5 71.7±0.6 80.1±0.2
Chebynet 78.0± 0.4 70.1± 0.5 78.0± 0.4
AR filter 80.8± 0.02 69.3± 0.15 78.1± 0.01
Ours 83.0± 0.02 73.6± 0.09 80.4± 0.02

Table 6: Test accuracy (%) averaged over 10 runs on the large-scale OGB node property prediction.
methods Products Mag Arxiv
MLP 61.06±0.08 26.92±0.26 55.50±0.23
GCN 75.64±0.21 30.43±0.25 71.74±0.29
GraphSage 78.29±0.16 31.53±0.15 71.49±0.27
Softmax 47.70±0.03 24.13±0.03 52.77±0.56
SGC 68.87± 0.01 29.47±0.03 68.78±0.02
S2GC 70.22± 0.01 32.47±0.11 70.15±0.13
S2GC+MLP 74.84±0.20 32.72±0.23 72.01±0.25

method because the performance of MLP is close to the one of Softmax. In other two datasets, the
significant improvements are easy to observe that S2GC with MLP is more close to GCN and even
outperform it.

4.4 TEXT CLASSIFICATION

Text classification predicts the labels of documents. Yao et al. (2019) use a 2-layer GCN to achieve
state-of-the-art results by creating a corpus-level graph which treats both documents and words as
nodes in a graph. Word-to-word edge weights are given by Point-wise Mutual Information (PMI)
and word-document edge weights are given by normalized TF-IDF scores.

We ran our experiments on five widely used benchmark corpora including movie review (MR),
20-Newsgroups (20NG), Ohsumed, R52 and R8 of Reuters 21578. We first preprocessed all the
datasets by cleaning and tokenizing text as (Kim, 2014). We then removed stop words defined in
NLTK6 and low frequency words appearing less than 5 times for 20NG, R8, R52 and Ohsumed. We
compare two state-of-the-art models with our method: GCN (Kipf & Welling, 2016) and SGC (Wu
et al., 2019). The statistics of the preprocessed datasets are summarized in Table 12. Table 7 shows
that an S2GC rivals their models on 5 benchmark datasets. We give the parameters setting in the
supplementary material.

4.5 A DETAILED COMPARISON WITH VARIOUS NUMBERS OF LAYERS AND α

Table 8 summaries the results for the deep models with various numbers of layers (or K for SGC
and our methods). We observe that on Cora, Citeseer and Pubmed that our method consistently
obtains the best performance with K = 16 equivalent of 16 layers. Overall, the results suggest

Table 7: Test accuracy on the document classification task.
Model 20NG R8 R52 Ohsumed MR

Text GCN 87.9 ± 0.2 97.0 ± 0.2 93.8 ± 0.2 68.2 ± 0.4 76.3 ± 0.3
SGC 88.5 ± 0.1 97.2 ± 0.2 94.0 ± 0.2 68.5 ± 0.3 75.9 ± 0.3
S2GC 88.6± 0.1 97.4 ± 0.1 94.5 ± 0.2 68.5 ± 0.1 76.7 ± 0.0

8

Under review as a conference paper at ICLR 2021

Table 8: Summary of classification accuracy (%) re-
sults with various depths. In the linear model, filter
parameter K is equivalent with the number of layers.

Dataset Method Layers (K)
2 4 8 16 32 64

Cora GCN 81.1 80.4 69.5 64.9 60.3 28.7
SGC 80.8 81.5 80.7 79.0 75.9 66.8
S2GC 76.5 79.8 82.5 83.0 82.2 80.0

Citeseer GCN 70.8 67.6 30.2 18.3 25.0 20.0
SGC 71.9 72.6 73.1 72.2 70.6 69.2
S2GC 70.9 72.7 72.7 73.4 73.1 73.2

Pubmed GCN 79.0 76.5 61.2 40.9 22.4 35.3
SGC 79.2 79.7 78.4 76.4 71.6 68.6
S2GC 77.6 78.7 79.4 80.6 78.0 74.9

Table 9: Classification accuracy (%) re-
sults with different α.

Dataset 0.0 0.05 0.1 0.15
cora 82.9 83.0 82.6 81.9
citeseer 73 73.4 73.3 72.9
pubmed 80.4 80.6 79.7 79.0

that with S2GC, we can aggregate over larger neighborhood than SGC thus we suffer less from
oversmoothing. On the other hand, the performance of GCN and SGC drops rapidly as the number
of layers exceeds 32 due to oversmoothing.

Table 9 summaries the results for the proposed method for various α ranged from 0 to 0.15. As we
can observe, α only slightly improves the performance of S2GC. Thus. balancing self-loop by α
with other filters of consecutively larger receptive fields is useful but the self-loop is not mandatory.

Table 10: Graph classification.
Method MUTAG PROTEINS COLLAB IMDB- BINARY
GCN 74.6 ± 7.7 73.1 ± 3.8 80.6 ± 2.1 72.6 ± 4.5
SAGE 74.9 ± 8.7 73.8 ± 3.6 79.7 ± 1.7 72.4 ± 3.6
GIN-0 85.7 ± 7.7 72.1 ± 5.1 79.3 ± 2.7 72.8 ± 4.5
GIN-ε 83.4 ± 7.5 72.6 ± 4.9 79.8 ± 2.4 72.1 ± 5.1
DiffPool 85.0 ± 10.3 75.1 ± 3.5 78.9 ± 2.3 72.6 ± 3.9
S2GC 85.1 ± 7.4 75.5 ± 4.1 80.2 ± 1.3 72.9 ± 4.9

4.6 GRAPH CLASSIFICATION

We report the average accuracy of 10-fold cross validation on a number of common benchmark
datasets (as shown in Table 10), where we randomly sample a training fold to serve as a validation
set. We only make use of discrete node features. In case they are not given, we use one-hot encod-
ings of node degrees as feature input. We note that graph classification is a task highly dependent
on the global pooling strategy. There exist methods that apply sophisticated mechanisms for this
step. However, with a simple average pooling and a highly scalable S2GC model, we comfortably
outperform all methods on MUTAG, Proteins and IMDB-Binary.

5 CONCLUSIONS

We have proposed Simple Spectral Graph Convolution (S2GC), a method based on the Markov
Diffusion Kernel (Section 3.2) whose feature maps emerge from the normalized Laplacian Regu-
larization problem (Section 3.3). The theoretical analysis shows that S2GC benefits from the right
level of trade-off in the aggregation over consecutively larger receptive fields. We have shown there
exist a connection between S2GC and other methods such as SGC, APPNP and JKN by analyzing
spectral properties and implementation of each model. However, ac our Claims I and II show, we
have designed a filter with unique properties to capture larger context while limiting oversmooth-
ing. S2GC inherits many of the strengths of spectral methods and copes better with oversmoothing
(larger K si achieved). We have conducted extensive and rigorous experiments that have shown that
S2GC is competitive and frequently outperforms many state-of-the-art methods on unsupervised,
semi-supervised and supervised tasks and several popular datasets.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In International Conference on Machine Learn-
ing, pp. 21–29, 2019.

Afonso S Bandeira, Amit Singer, and Daniel A Spielman. A cheeger inequality for the graph con-
nection laplacian. SIAM Journal on Matrix Analysis and Applications, 34(4):1611–1630, 2013.

James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. Hyperopt: a
python library for model selection and hyperparameter optimization. Computational Science &
Discovery, 8(1):014008, 2015. URL http://stacks.iop.org/1749-4699/8/i=1/a=
014008.

Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-supervised learning (adaptive
computation and machine learning), 2006.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations, 2018.

Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American Mathematical
Soc., 1997.

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual information, and lexi-
cography. Computational linguistics, 16(1):22–29, 1990.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

François Fouss, Kevin Francoisse, Luh Yen, Alain Pirotte, and Marco Saerens. An experimental
investigation of kernels on graphs for collaborative recommendation and semisupervised classifi-
cation. Neural networks, 31:53–72, 2012.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2019a.

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learn-
ing. In Advances in Neural Information Processing Systems, pp. 13354–13366, 2019b.

James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-
order cheeger inequalities. Journal of the ACM (JACM), 61(6):1–30, 2014.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial In-
telligence (AAAI-18), pp. 3538–3545. Association for the Advancement of Artificial Intelligence,
2018a.

10

http://stacks.iop.org/1749-4699/8/i=1/a=014008
http://stacks.iop.org/1749-4699/8/i=1/a=014008

Under review as a conference paper at ICLR 2021

Qimai Li, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and Zhichao Guan. Label efficient semi-
supervised learning via graph filtering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convolutional neural
networks. arXiv preprint arXiv:1801.03226, 2018b.

Naoki Masuda, Mason A Porter, and Renaud Lambiotte. Random walks and diffusion on networks.
Physics reports, 716:1–58, 2017.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

S Pan, R Hu, G Long, J Jiang, L Yao, and C Zhang. Adversarially regularized graph autoencoder
for graph embedding. In IJCAI International Joint Conference on Artificial Intelligence, 2018.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. arXiv preprint cs/0506075, 2005.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets. Cambridge University
Press, 2011.

Alexander J. Smola and Risi Kondor. Kernels and regularization on graphs, 2003.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077, 2015.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Lio, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR (Poster), 2019.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. arXiv preprint arXiv:1902.07153, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462, 2018b.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 7370–7377,
2019.

Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. Attributed graph clustering via adaptive
graph convolution. arXiv preprint arXiv:1906.01210, 2019.

11

Under review as a conference paper at ICLR 2021

Table 11: The statistics of datasets used for node classification and clustering.
Dataset # Nodes # Edges class feature Train/Dev/Test Nodes
Cora 2, 708 5, 429 7 1433 140/500/1, 000
Citeseer 3, 327 4, 732 6 3703 120/500/1, 000
Pubmed 19, 717 44, 338 3 500 60/500/1, 000
Reddit 232, 965 11, 606, 919 41 602 152K/24K/55K
wiki 2405 17981 17 4973

A SUPPLEMENTARY MATERIAL

A.1 NODE CLUSTERING

For S2GC and AGC, we set max iterations to 60. For other baselines, we follow the parameter
settings in the original papers. In particular, for DeepWalk, the number of random walks is 10,
the number of latent dimensions for each node is 128, and the path length of each random walk is
80. For DNGR, the autoencoder is of three layers with 512 neurons and 256 neurons in the hidden
layers respectively. For GAE and VGAE, we construct encoders with a 32-neuron hidden layer and
a 16-neuron embedding layer, and train the encoders for 200 iterations using the Adam optimizer
with learning rate equal 0.01. For ARGE and ARVGE, we construct encoders with a 32-neuron
hidden layer and a 16-neuron embedding layer. The discriminators are built by two hidden layers
with 16 and 64 neurons respectively. On Cora, Citeseer and Wiki, we train the autoencoder-related
models of ARGE and ARVGE for 200 iterations with the Adam optimizer, with the encoder and
discriminator learning rates both set as 0.001; on Pubmed, we train them for 2000 iterations with the
encoder learning rate 0.001 and the discriminator learning rate 0.008.

A.2 TEXT CLASSIFICATION

The 20NG dataset1 (bydate version) contains 18,846 documents evenly categorized into 20 dif-
ferent categories. In total, 11,314 documents are in the training set and 7,532 documents are in the
test set.

The Ohsumed corpus2 is from the MEDLINE database, which is a bibliographic database of
important medical literature maintained by the National Library of Medicine. In this work, we used
the 13,929 unique cardiovascular diseases abstracts in the first 20,000 abstracts of the year 1991.
Each document in the set has one or more associated categories from the 23 disease categories.
As we focus on single-label text classification, the documents belonging to multiple categories are
excluded so that 7,400 documents belonging to only one category remain. 3,357 documents are in
the training set and 4,043 documents are in the test set.

R52 and R8 (all-terms version) are two subsets of the Reuters 21578 dataset. R8 has 8 categories,
and was split to 5,485 training and 2,189 test documents. R52 has 52 categories, and was split to
6,532 training and 2,568 test documents.

MR is a movie review dataset for binary sentiment classification, in which each review only con-
tains one sentence (Pang & Lee, 2005) The corpus has 5,331 positive and 5,331 negative reviews.
We used the training/test split in (Tang et al., 2015).

A.3 OPEN GRAPH BENCHMARK: NODE PROPERTY PREDICTION

A.3.1 TEXT CLASSIFICATION

Parameters. We follow the setting of Text GCN (Yao et al., 2019) that includes experiments on
four widely used benchmark corpora such as 20-Newsgroups (20NG), Ohsumed, R52 and R8 of
Reuters 21578. For Text GCN, SGC, and our approach, the embedding size of the first convolution
layer is 200 and the window size is 20. We set the learning rate to 0.02, dropout rate to 0.5 and
the decay rate to 0. The 10% of training set is randomly selected for validation. Following (Kipf
& Welling, 2016), we trained our method and Text GCN for a maximum of 200 epochs using the

12

Under review as a conference paper at ICLR 2021

Table 12: The statistics of datasets for text classification.
Dataset # Docs # Training # Test # Words # Nodes # Classes Average Length
20NG 18,846 11,314 7,532 42,757 61,603 20 221.26

R8 7,674 5,485 2,189 7,688 15,362 8 65.72
R52 9,100 6,532 2,568 8,892 17,992 52 69.82

Ohsumed 7,400 3,357 4,043 14,157 21,557 23 135.82
MR 10,662 7,108 3,554 18,764 29,426 2 20.39

Adam (Kingma & Ba, 2014) optimizer, and we stop training if the validation loss does not decrease
for 10 consecutive epochs. The text graph was built according to steps detailed in the supplementary
material.

To convert text classification into the node classification on graph, there are two relationships con-
sidered when forming graphs: (i) the relation between documents and words and (ii) the connection
between words. For the first type of relations, we build edges among word nodes and document
nodes based on the word occurrence in documents. The weight of the edge between a document
node and a word node is the Term Frequency-Inverse Document Frequency (Rajaraman & Ullman,
2011) (TF-IDF) of the word in the document applied to build the Docs-words graph. For the second
type of relations, we build edges in graph among word co-occurrences across the whole corpus. To
utilize the global word co-occurrence information, we use a fixed-size sliding window on all doc-
uments in the corpus to gather co-occurrence statistics. Point-wise Mutual Information (Church &
Hanks, 1990) (PMI), a popular measure for word associations, is used to calculate weights between
two word nodes according to the following definition:

PMI(i, j) = log
p(i, j)

p(i)p(j)
(14)

where p(i, j) = W (i,j)
W , p(i) = W (i)

W . #W (i) is the number of sliding windows in a corpus that
contain word i, #W (i, j) is the number of sliding windows that contain both word i and word j,
and #W is the total number of sliding windows in the corpus. A positive PMI value implies a
high semantic correlation of words in a corpus, while a negative PMI value indicates little or no
semantic correlation in the corpus. Therefore, we only add edges between word pairs with positive
PMI values:

A =

[
W1 W2

W>
2 I

]
or

Aij =

PMI(i, j) if i, j are words, PMI(i, j) > 0,

TF-IDFij if i is document, j is word,
1 if i = j,

0 otherwise.

(15)

A.4 THEORETICAL ANALYSIS

Below we show that we can reduce oversmoothing compared to SGC while incorporating larger
receptive fields.

Our design contains a sum of consecutive diffusion matrices T̃k, k = 0, · · · ,K. As k increases, so
does the neighbourhood of each node visited in diffusion T̃k (analogy to random walks).

This means that:

Claim I. Our filter, by design, will give the highest weight to the closest neighborhood of a node as
neighborhoods N of diffusion steps k = 0, · · · ,K obey: N (T̃0) ⊆ N (T̃1) ⊆ · · · ⊆ N (T̃K) ⊆
N (T̃∞). That is, smaller neighbourhoods belong to larger neighbourhoods too.

13

Under review as a conference paper at ICLR 2021

To see this clearer, for the q-dimensional Euclidean lattice graph with infinite number of nodes, after
t steps of random walk, the estimate of absolute distance the walk moves from the source to its
current position is given as:

r(t, q) =

√
2t

q
·

Γ
(
q+1
2

)
Γ (q + 1)

, (16)

where r(t, q) is the absolute distance walked from the source to the current point and Γ(·) is the
Gamma function. Moreover, if the number of dimensions q →∞, we have r(t, q) ≤

√
t. It is clear

then that the receptive field associated with the random walk (and thus diffusion at time t) obeys the
monotonically increasing radius r, that is r(0) ≤ r(1) ≤ · · · ≤ r(K) ≤ · · · ≤ r(∞). To see that,
simply plot

√
t (and/or the more complicated expression).

This proves Claim I for the Euclidean lattice graph. That is, for consecutive diffusion steps T̃k, k =
0, · · · ,K, our receptive field grows.

Moreover, note that our filter is realized as the sum of consecutive diffusion steps, that is
1
t

∑t
τ=0 diff(s, τ) where s is the source of walk. It is easy to see then that even if each walked

distance was to contribute the energy proportional with r(t) to the summation term, we have:

lim
t→∞

1
t

t∑
t′=0

√
t′

√
t

= 0, (17)

where the enumerator is the model of the total energy when aggregating over receptive fields from
size 0 to∞ in S2GC while the denominator is the total energy of SGC (filter is given by T̃K , that is
by diff(s, t)).

Claim II. The above proof shows that the above ratio of energies is 0 tells that the energy of infinite-
dimensional receptive field (when t → ∞) is not going to dominate the sum energy of our filter.
Thus, according to this model S2GC can incorporate larger receptive fields without overbearing
contributions of smaller receptive fields compared to SGC as t→∞ on the Euclidean lattice graph.

However, in practice, we work with finite-dimensional non-Euclidean graphs. Obtaining the abso-
lute distance r(t) walked from the source is a difficult topic. Kindly see for instance Eq. 184 in
Masuda et al. (2017).

For this reason, below we use a simple approximation. We use Theorem 1 (main paper) as the
proxy for the walked radius. That is to say the error of convergence to the stationary distribution is
indicative of the absolute distance walked from the source/node. Specifically, we have:

Recall Theorem 1. That is, let λ2 denote second largest eigenvalue of transition matrix T̃ = D−1A,
p(t) be the probability distribution vector and π the stationary distribution. If walk starts from the
vertex i , pi(0) = 1, then after t steps for every vertex:

|pj(t)− πj | ≤
√
dj
di
λt2, (18)

Then, the average walked distance r from node i over t steps in a graph with n nodes and connec-
tivity given by the second largest eigenvalue λ2, denoted by r(i, t, n) is lower-bounded by r̄(i, t, n)
as follows:

r(i, t, n) ≈ 1
1
n

∑
j 6=i
|pj(t)−Πj |

≥ r̄(i, t, n) =
n

λt2

∑
j 6=i
√
dj√

di

=
n
√
di

λt2(2|E| − di)
, (19)

where n is the number of nodes, t is the number of diffusion steps (think T̃k), di and dj are degrees
of nodes i and j, λ2 being the second largest eigenvalue intuitively denotes the graph connectivity
(large λ2 ≤ 1 indicates low connectivity while low λ2 indicates high connectivity in graph), and |E|
is the total number of edges in the graph.

While the above approximations may be loose for very small/large t, the important property to note
is that r(i, 0, n) ≤ r(i, 1, n) ≤ · · · ≤ r(i, t, n) which indicates that our filter indeed realises the sum

14

Under review as a conference paper at ICLR 2021

over increasingly larger receptive fields. As smaller receptive fields are a subset of larger receptive
fields given node i, that is N (T̃0) ⊆ N (T̃1) ⊆ · · · ⊆ N (T̃K) ⊆ N (T̃∞), this proves our Claim I.

To prove Claim II for general graphs, we have:

lim
t→∞

1
t

t∑
t′=0

r̄(i, t′, n)

r̄(i, t, n)
= 0, (20)

Similar findings are highlighted by carefully considering the meaning of so-called Cheeger constant
introduced in Section A.5. More on spectral analysis of filters in GCNs can be found in the studies
of Li et al. (2018a) and Li et al. (2018b).

A.5 GRAPH PARTITIONING

Below we introduce the definitions of expansion and k-way Cheeger constant.

Definition A.1. Expansion: For a node subset S ⊆ V, φ(S) = |E(S)|
min{vol(S),vol(V \S)} ,

where E(S) is the set of edges with one node in S and vol(S) is the sum of degree of nodes in set S.
Definition A.2. The k-way Cheeger constant is given as: ρG(k) = minS1,S2,··· ,Sk

max{φ(Si) :
i = {1, · · · , k}} where the minimum is over all collections of k non-empty disjoint subsets
S1, S2, · · · , Sk ⊆ V .

According to the definitions, the expansion in Def. A.1 describes the effect of graph partitioning
according to subset S while the k-way Cheeger constant reflects the effect of the graph partitioning
into k parts–the smaller the value the better the partitioning is. Higher-order Cheeger’s inequal-
ity (Bandeira et al., 2013; Lee et al., 2014) bridges the gap between the network spectral analysis
and graph partitioning by controlling the bounds of k-way Cheeger constant:

λk
2
≤ ρG(k) ≤ O

(
k2
)√

λk, (21)

where λk is the k-th eigenvalue of the normalized Laplacian matrix and 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
From inequality 21, we can conclude that small (large) eigenvalues control global clustering (local
smoothing) effect of the graph partitioned into a few large parts (many small parts).

15

	Introduction
	Preliminaries
	Methodology
	Spectral analysis and graph partitioning
	Markov Diffusion Kernel
	Simple Spectral Graph Convolution
	Complexity Analysis

	Experiments
	Node Clustering
	Community Prediction
	Node Classification
	Text Classification
	A detailed comparison with various numbers of layers and
	Graph Classification

	Conclusions
	Supplementary Material
	Node Clustering
	Text Classification
	Open Graph Benchmark: Node Property Prediction
	Text Classification

	Theoretical analysis
	Graph partitioning

