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Abstract

We study on robust feature representations that can generalize on multiple datasets1

for action recognition using transformers. Although we have witnessed great2

progress of action recognition in the past decade, it remains challenging yet valuable3

how to train a single model that can perform well across multiple datasets. Here4

we propose a novel cross-dataset training paradigm, CrossRoad, with the design of5

two new loss terms, namely informative loss and projection loss, aiming to learn6

robust representations for action recognition. We verify the effectiveness of our7

method on five challenging datasets, Kinetics-400, Kinetics-700, Moments-in-Time,8

Activitynet and Something-something-v2 datasets. Extensive experimental results9

show that our method can consistently improve the state-of-the-art performance.10

We will release our code and models.11

1 Introduction12

Human vision can recognize video actions efficiently despite the variations of scenes and domains.13

Convolutional neural networks (CNNs) [37, 38, 6, 33, 14] fully utilize the power of modern computa-14

tional devices and employ spatial-temporal filters to recognize actions, which outperform traditional15

models such as oriented filtering in space time (HOG3D) [23]. However, due to the high variations in16

space-time, the state-of-the-art of action recognition is still far from being satisfactory, compared with17

the success of 2D CNNs in image recognition [19]. Recently, vision transformers like ViT [10], MViT18

[12] that are based on the self-attention [40] mechanism are proposed to tackle the problems of image19

and video recognition. Instead of modeling pixels as CNNs, transformers apply attentions on top of20

visual tokens. The inductive bias of translation invariance in CNNs makes it require less training data21

than pure-attention-transformers in general. However, transformer has the advantage that it can better22

harness the parallel processing units of modern computing devices such as GPUs and TPUs, making23

it more computationally efficient than CNNs. We have seen a rapid growth in video datasets [21] in24

recent years, which would make up for the shortcomings of data-hungry transformers. The video25

data has not only grown in quantity from hundreds to millions of videos [31] but also evolved from26

simple actions such as handshaking to complicated daily activities from the Kinetics-700 dataset [7].27

Meanwhile, transformers combined with low-level convolutional operations have been proposed [12]28

to further improve the original design.29

Due to the data-hungry nature of transformers, most transformer-based models for action recognition30

requires large-scale pre-training with image datasets such as ImageNet-21K [9] and JFT-3B [44] to31

achieve good performance. This pre-training and fine-tuning training paradigm is time-consuming32

and it is not parameter-efficient, meaning that for each action dataset, a new model need to be trained33

end-to-end. Different from large image datasets such as ImageNet-21K that covers a wide range34

of object classes, currently the most diverse action dataset, Kinetics-700, only contains 700 classes.35

Each action dataset may be also limited to a certain topic or camera views. For example, Moments-36
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Figure 1: Overview of our cross-dataset training framework. We propose to utilize the intrinsic
relations between classes across different action datasets. As we see, the two video examples from
Kinetics and Moments-in-Time dataset, respectively, show that samples from these two classes can
be used to train both classification heads. The videos from multiple action datasets are input to the
MViTv2 (see Section 3.1) backbone and the model is trained jointly. The informative loss is applied
to maximize the information content of the embedding from the backbone and projection loss is
applied to learn the intrinsic relations (see Section 3.2).

in-Time [31] only contains short actions that happen in 3 seconds and Something-Something-v2 [18]37

focuses on close-up camera view of person-object interactions. These dataset biases might hinders38

models trained on a single dataset to generalize and be used in a practical way. These challenges in39

action datasets make learning a general-purpose action model difficult. An ideal model should be40

able to cover a wide range of action classes meanwhile keeping the computation cost low. However,41

simply combining all these datasets to train a joint model does not lead to good performance [27].42

In previous work [45], the authors have shown the benefit of training a joint model using multiple43

action datasets but their method requires large-scale image datasets such as ImageNet-21K [9] and44

JFT-3B [44], which is not available to the research community.45

In this paper, we propose a general training paradigm for Cross-dataset training of Robust action46

recognition models, CrossRoad. Our method is designed to learn robust and informative feature47

representations in a principled way, using the informative loss for regularization. We do not assume48

the availability of large-scale image dataset pre-training (although one can certainly start with). Since49

there are intrinsic relations between different classes across different action datasets (See Fig. 1 for50

examples of similar classes from two datasets), we propose a projection loss to mine such relations51

such that the whole network is trained to avoid over-fitting to certain dataset biases. Finally, all52

proposed loss terms are weighted using learned parameters, so no hyper-parameter tuning is needed.53

Our empirical findings as shown in Table 1 indicate that our robust training method can consistently54

improve model backbone performance across multiple datasets. We show that our model can achieve55

competitive results compared to state-of-the-art methods, even without large-scale image dataset56

pre-training, and with lower computational cost.57

The main contributions of this paper are three-fold:58

• To our knowledge, this is the first work to introduce informative representation regularization59

into cross-dataset training for action recognition.60

• We propose an effective approach to mine intrinsic class relations in cross-dataset training61

by introducing the projection loss.62

• Our method requires negligible computation overhead during training and no additional63

computation during inference to the backbone network. Extensive experiments on various64

datasets suggest our method can consistently improve performance.65

2 Related Work66

CNNs and Vision Transformers. CNNs work as the standard backbones throughout computer vision67

tasks for image and video. Various effective convolutional neural architectures have been raised to68

improve the precision and efficiency (e.g., VGG [34], ResNet [19] and DenseNet [20]). Although69

CNNs are still the primary models for computer vision, the Vision Transformers have already70

shown their enormous potential. Vision Transformer (ViT [10]) directly applies the architecture of71
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Transformer on image classification and get encouraging performance. ViT and its variants (e.g.,72

ViViT [2], TimesFormer [4], MViT [12], Swin [29], MTV [41]) achieve outstanding results in both73

image and video processing in recent years. These transformer-based modeling approaches have74

driven most of the recent advancements in the action recognition task. We focus on the training75

paradigm instead and study how training on various datasets can lead to robust general-purpose76

models.77

Action Recognition/Classification. The research of action recognition has advanced with both new78

datasets and new models. The modern benchmarks for action recognition is the Kinetics dataset79

[21]. The Kinetics dataset proposes a large benchmark with more categories and more videos (e.g.,80

400 categories 160,000 clips in [21] and 700 categories in [7]) as a harder benchmark compared to81

previous datasets like UCF-101 [36]. The Moments-in-Time [31] (MiT) dataset provides a million82

short video clips that covers 305 action categories. Note that it is impossible for Kinetics and MiT83

datasets to cover all the possible actions in all possible scales. For example, surveillance actions are84

missing in the two datasets. Many new approaches [39, 46, 28, 15, 42] have been carried out on85

these datasets, of which the SlowFast network [15] and MViT [12] obtain promising performance.86

We can see the trend of action recognition in the last two decades is to collect larger datasets (e.g.,87

Kinetics) and build models with a larger capacity.88

Cross-dataset Training. Different datasets are constructed using different data sources (e.g., movies,89

internet videos, and daily photography), labeling definitions (actions by a single person, actions90

between persons, and actions by a person with some objects). Thus, dataset bias and domain shift91

are inevitably involved. The domain shift hampers the generalization of the recognition model92

and restrict application feasibility. Several works [32, 8, 35] were proposed to tackle this issue.93

Previous works typically focused on the issue of domain adaption or transfer learning. However,94

the transferred models still suffer from problem of parameter-inefficiency, meaning that separate95

models are needed for different datasets. Larger datasets often deliver better results. Combining96

multiple datasets to boost data size, and improve the final performance [17], and the simultaneous97

use of multiple datasets is also likely to alleviate the damaging impact of dataset bias. OmniSource98

[11] utilizes web images as part of the training dataset to expand the diversity of the training data99

to reduce dataset bias. VATT [1] uses additional multi-modal data for self-supversied pretraining100

and finetunes on downstream datasets. CoVeR [45] combines image and video training even during101

the finetuning stage and reports significant performance boost compared to single-dataset training.102

Within each batch, CoVeR randomly samples from both image and video datasets and the sampling103

rate is proportional to the size of the datasets. PolyViT [27] further extends to training with image,104

video and audio datasets. Several sampling procedures including Task-by-Task, Alternating, Uniform105

task sampling, etc., are proposed to facilitate effective co-training. In this paper, we propose to utilize106

regularization methods and simple random sampling to fully leverage information across different107

datasets to produce general-purpose representations, without the use of any image or additional data108

from other modality.109

3 Method110

Our method is built upon the backbone of the Improved Multi-scale Vision Transformers111

(MViTv2) [26, 12]. Note that our approach works with any action recognition backbones. Given112

videos from multiple datasets during training, the model backbone takes the video frames and pro-113

duces feature embeddings for each video. The same number of Multi-layer Perceptron (MLP) as the114

datasets are constructed as model heads to predict action classes for each dataset. To facilitate robust115

cross-dataset training, we propose two loss terms, namely, the informative loss and projection loss.116

The informative loss aims to maximize the embeddings’ representative power. The projection loss,117

with the help of multiple cross-dataset projection layers, guides the model to learn intrinsic relations118

between classes of different dataset, hence the model heads can be trained jointly. See Fig. 1 for an119

overview of our framework. In this section, we first briefly describe the MViTv2 backbone design,120

and then present our proposed robust cross-dataset training paradigm.121

3.1 The MViTv2 Backbone122

Our model is based on the improved multi-scale vision transformers (MViTv2) [12, 26], which learns123

a hierarchy from dense (in space) and simple (in channels) to coarse and complex features. The series124
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Figure 2: The MViTv2 Block. The residual connection for pooled query tensor (red arrow) and the
residual 3D convolution operation outside the Multi-head Pooling Attention block are additions to
the MViTv1 [12] design. The linear layer in the residual connection of the MLP block is only needed
when the output embedding dimension is different. Compared to the MViTv2 paper [26], we do not
use the decomposed relative embedding.

of work of vision transformers [10] (ViTs) follows the basic self-attention architecture [40] originally125

proposed for machine translation. In contrast to natural language which can be directly tokenized126

into words, given the input video V ∈ RT×H×W×3, ViTs extract tokens by splitting the video into127

N = ⌊T/t⌋ × ⌊H/h⌋ × ⌊W/w⌋ non-overlapping patches, {v1, · · · ,vN ∈ Rt×h×w}. Each patch is128

then projected into a patch embedding by a 3D convolution operator E. All patch embeddings are129

then concatenated into a sequence, and separate learnable spatial-temporal positional embeddings130

ps,pt are also added to this sequence. The patch embedding process is denoted by:131

X0 = [Ev1 · · ·EvN] + P (ps,pt) ∈ RN×dp (1)

The P function extends the separate position embedding into the length of the sequence by repeating132

at the same spatial or temporal location. dp is the dimension of the patch embedding.133

The key component of the MViTv1 model [12] is the Multi Head Pooling Attention (MHPA), which134

pools the sequence of latent tensors to reduce the spatial or temporal dimension of the feature135

representations. In MViTv2 [26], a residual connection in MHPA for the pooled query tensor and a136

decomposed relative position embedding 1 are added. In this paper, we use 3D convolution as the137

pooling operation. Fig. 2 shows the detailed architecture of the MViTv2 block (our implementation).138

Each MViTv2 block consists of a multi-head pooling attention layer (MHPA) and a multi-layer139

perceptron (MLP), and the residual connections are built in each layer. The feature of each MViTv2140

block is computed by:141

X1 = MHPA(LN(X)) + Pool(X)

Block(X) = MLP(LN(X1)) +X1
(2)

where X is the input tensor to each block. Multiple MViTv2 blocks are grouped into stages to reduce142

the spatial dimension while increase the channel dimension. The full backbone architecture is listed143

in supplementary material.144

Classification head For the action recognition problem, the model produces C-class classification145

logits by first averaging the feature tensor from the last stage along the spatial-temporal dimensions146

1We did not implement this part as the code was not available at the time of writing.
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(we do not use the [CLASS] token in our transformer implementation), denoted as z ∈ Rd. A147

linear classification layer is then applied on the averaged feature tensor to produce the final output,148

y = Woutz ∈ RC .149

Pre-training and finetuning In the standard training paradigm for action recognition, models150

are pretrained using image datasets (ImageNet [9] or large-scale datasets like JFT-3B [44]) and151

then finetune on the target action recognition dataset. For CNN-based backbones, model weight152

inflation [21] is utilized to adapt the model trained on 2D image data to 3D video input. For153

transformer-based backbones, as the inputs are tokenized into a sequence, to adapt the model from154

image pretraining, the positional embeddings are interpolated to account for the additional temporal155

dimension before the finetuning.156

Cross-dataset training paradigm In general, to facilitate cross-dataset training of K datasets, the157

same number of classification heads are appended to the feature embeddings. The k-th dataset158

classification output is defined as Yk = hk(Z;Wk) ∈ RB×C , where hk could be a linear layer or a159

MLP and Wk is the layer parameter.160

3.2 CrossRoad: Robust Cross-dataset Training161

Our training process fully leverages different action recognition datasets by enforcing an informative162

loss to maximize the expressiveness of the feature embedding and a projection loss for each dataset163

that mines the intrinsic relations between classes across other datasets. We then use uncertainty to164

weight different loss terms without the need for any hyper-parameters.165

Informative loss. Inspired by the recently proposed VICReg [3] and Barlow Twins [43] method166

for self-supervised learning in image recognition, we propose to utilize an informative loss function167

with two terms, variance and covariance, to maximize the expressiveness of each variable of the168

embedding. This loss is applied to each mini-batch, without the need for batch-wise nor feature-169

wise normalization. Given the feature embeddings of the mini-batch, Z ∈ RB×d, an expander170

(implemented as a two-layer MLP) maps the representations into an embedding space for the171

informative loss to be computed, denoted as Z′ ∈ RB×d. The variance loss is computed using a172

hinge function and the standard deviation of each dimension of the embeddings by:173

Lv =
1

d

d∑
j=1

max(0, 1−

√∑
(Z′

ij − Z̄′
:j)

d− 1
+ ϵ) (3)

Where : is a tensor slicing operation that extracts all elements from a dimension, and Z̄′
:j is the174

mean over the mini-batch for j-th dimension. ϵ is a small scalar preventing numerical instabilities.175

With random sampling videos across multiple datasets for each batch, this criterion encourages the176

variance of each dimension in the embedding to be close to 1, preventing embedding collapse [43].177

The covariance loss c(Z′) is defined as:178

C(Z′) =
1

n− 1

n∑
i=1

(Z′
i − Z̄′)(Z′

i − Z̄′)T , where Z̄′ =
1

n

n∑
i=1

Z̄′
i

Lc =
1

d

∑
i̸=j

[C(Z′)]2i,j

(4)

Inspired by VICReg [3] and Barlow Twins [43], we first compute the covariance matrix of the feature179

embeddings in the batch, C(Z′), and then define the covariance term Lc as the sum of the squared180

off-diagonal coefficients of C(Z′), scaled by a factor of 1/d.181

Projection Loss. In previous works [45, 27], the intrinsic relations between classes from across182

different datasets have been mostly ignored during training. We believe that samples in one dataset183

can be utilized to train the classification head of other datasets. As shown in Fig. 1, the “Clean184

and jerk” video sample from Kinetics can be considered as a positive sample for “Weightlifting” in185

Moments-in-Time as well (but not vice versa). Based on this intuition, we propose to add a directed186

projection layer for each pair of datasets for the model to learn such intrinsic relations. One can also187

initialize the projection using prior knowledge but it is out-of-scope for this paper. Given the output188
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from the k-th dataset classification output, the projected classification output is defined as:189

Y′
k = Yk +

K−1∑
i̸=k

Wproj
ik Yi ∈ RCk (5)

where Ck is the number of classes for the k-th dataset and Wproj
ik is the learned directed class190

projection weights from i-th to k-th dataset. In this paper we only consider a linear projection191

function. We then use the ground truth labels of the k-th dataset to compute standarad cross-entropy192

loss:193

Lk = −
Ck∑
c=1

Ŷk,c log(Y
′
k,c) (6)

where Ŷk,c is the ground truth label for the c-th class from the k-th dataset.194

Training. We jointly optimize the informative loss and the projection loss during cross-dataset195

training. To avoid tuning loss weights of different terms, we borrow the weighting scheme from196

multi-task learning [22] and define the overall objective function as:197

L(σ) = Lv + Lc +

K∑
k=1

1

2σ2
k

Lk + log σk (7)

where σ is a vector of parameters of size K (the number of datasets) for each projection loss term.198

4 Experiments199

In this section, to demonstrate the efficacy of our training framework, we experiment on five ac-200

tion recognition datasets, including Kinetics-400 [21], Something-Something-v2 [18], Moments-201

in-Time [31], Activitynet [5] and Kinetics-700 [7]. The action recognition task is defined to be a202

classification task given a trimmed video clip. In the experiments, we aim to showcase that our203

method can achieve significant performance improvement with minimal computation overhead.204

4.1 Experimental Setup205

Datasets. We evaluate our method on five datasets. Kinetics-400 [21] (K400) consists of about 240K206

training videos and 20K validation videos in 400 human action classes. The videos are about 10207

seconds long. Kinetics-700 [7] (K700) extends the action classes to 700 with 545K training and208

35K validation videos. The Something-Something-v2 (SSv2) [18] dataset contains person-object209

interactions, which emphasizes temporal modeling. SSv2 includes 168K videos for training and210

24K videos for evaluation on 174 action classes. The Moments-in-Time (MiT) dataset is one of the211

largest action dataset with 727K training and 30k validation videos. MiT videos are mostly short212

3-second clips. The ActivityNet dataset [5] (ActNet) originally contains untrimmed videos with213

temporal annotations of 200 action classes. We cut the videos into 10-second long clips and split214

the dataset into 107K training and 16K testing. Following previous works [15, 45], we follow the215

standard dataset split and report top-1/top-5 classification accuracy on the test split for all datasets.216

We conduct two sets of experiments, namely K400 + MiT + SSv2 + ActNet and K700 + MiT + SSv2217

+ ActNet.218

Implementation. Our backbone model utilizes MViTv2 as described in Section 3.1. Our models219

are trained from scratch with random initialization, without using any pre-training (same as in [15]220

and different from previous works [45, 27] that require large-scale image dataset pre-training like221

ImageNet-21K [9] or JFT-3B [44]). We follow standard dataset splits as previous works [26, 15, 41].222

See more details in the supplementary material.223

Baselines. PolyViT [27] utilizes multi-task learning on image, video and audio datasets to improve224

vision transformer performance. The backbone they used are based on ViT-ViViT [2]. Similarly,225

VATT [1] utilizes additional multi-modal data for self-supversied pretraining and finetunes on226

downstream datasets. The backbone network is based on ViT [10]. CoVER [45] is a recently227

proposed co-training method that includes training with images and videos simultaneously. Their228

model backbone is based on TimeSFormer [4]. We also compare our method with other recent models229

trained using large-scale image datasets. See Table 1 and Table 2 for the full list.230
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method Training Data gFLOPs K400 MiT SSv2 ActNet

ViViT [2] + IN-21K 3992 81.3 / 94.7 38.5 / 64.1 65.9 / 89.9 -

VidTr [25] + IN-21K 392 80.5 / 94.6 - 63.0 / - -

TimeSFormer [4] + IN-21K 2380 80.7 / 94.7 - 62.4 / - -

X3D-XXL [13] + IN-21K 194 80.4 / 94.6 - - -

MoViNet [24] Scratch 386 81.5 / 95.3 40.2 / - 64.1 / 88.8

MViT-B [12] Scratch 455 81.2 / 95.1 - 67.7 / 90.9 -

MTV-B (320p) [41] + IN-21K 1116 82.4 / 95.2 41.7 / 69.7 68.5 / 90.4 -

Video Swin [29] + IN-21K 2107 84.9 / 96.7 - 69.6 / - -

MViTv2-L [26] + IN-21K 2828 86.1 / 97.0 - 73.3 / 94.1 -

MViTv2 w/o rel Scratch 225 80.1 / - - - -

Ours-baseline Scratch 224 79.8 / 93.9 38.6 / 67.5 67.0 / 90.7 81.5 / 95.1

VATT [1]*

AudioSet

+ HowTo100M

+ Downstream

2483 82.1 / 95.5 41.1 / 67.7 - -

CoVER [45]
IN-21K + K400

+ SSv2 +MiT
2380 83.1 / - 41.3 / - 64.2 / - -

PolyViT [27]

IN-1K + K400

+ MiT

+ [Audio]

+ [Image]

3992 82.4 / 95.0 38.6 / 65.5 - -

CrossRoad
K400 + SSv2

+MiT + ActNet
224 81.9 / 95.2 41.7 / 71.0 68.9 / 91.6 87.4 / 97.3

CrossRoad(312p)
K400 + SSv2

+MiT + ActNet
614 83.2 / 96.4 43.1 / 71.9 69.3 / 92.1 88.2 / 97.6

Table 1: Comparison with state-of-the-art on Kinetics-400, Moments-in-Time, Something-something-
v2 and ActivityNet. We divide the baselines into two groups based on whether they are parameter-
efficient. We report top-1/top-5 accuracy for each dataset. The bold numbers and underlined
are ranked first and second, respectively. “IN+21K” means ImageNet-21K dataset. The FLOPs
computation is for a single video clip input. PolyViT [27] is trained jointly with multiple image, audio
and video datasets. We list the larger ones. “*” is pretrained on AudioSet [16] and HowTo100M [30]
in a self-supervised fashion and then finetuned on each downstream datasets, which results in separate
models for each dataset.

4.2 Main Results231

We summarize our method performance in Table 1 and Table 2. We train our model jointly on MiT,232

SSv2, ActNet and two version of the Kinetics datasets.233

We first compare our method with the original MViTv2 backbone in Table 1. The “MViTv2 w/o234

rel” indicates the model without the relative positional embedding in the original paper. As we see,235

compared to our implementation, the performance difference is minor. The difference could be due236

to the small difference in the datasets (Kinetics videos are taking down from Youtube from the time237

of release. See supplementary material for full dataset statistics. We train our baseline model on the238

training set of each dataset to investigate the baseline performance. As we see, after adding robust239

joint training proposed in this paper, performance on each dataset has increased by 2.1%, 3.1%,240

1.9% and 5.9% on K400, MiT, SSv2, ActivityNet, respectively in terms of top-1 accuracy. Note241
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method Training Data gFLOPs K700 MiT SSv2 ActNet

VidTr [25] + IN-21K 392 70.8 / - - 63.0 / - -

MoViNet [24] Scratch 386 72.3 / - - - -

MTV-B (320p) [41] + IN-21K 1116 75.2 / 91.7 41.7 / 69.7 68.5 / 90.4 -

MViT-v2 [26] + IN-21K 2828 79.4 / 94.9 - 73.3 / 94.1 -

Ours-baseline Scratch 224 74.1 / 91.9 38.6 / 67.5 67.0 / 90.7 81.5 / 95.1

VATT [1]*

AudioSet

+ HowTo100M

+ Downstream

2483 72.7 / - 41.1 / 67.7 - -

CoVER [45]
IN-21K + K700

+ SSv2 +MiT
2380 74.9 / - 41.5 / - 64.7 / - -

CrossRoad
K700 + SSv2

+MiT + ActNet
224 75.8 / 93.2 42.2 / 72.3 69.1 / 92.2 88.1 / 97.2

CrossRoad(312p)
K700 + SSv2

+MiT + ActNet
614 76.3 / 93.5 43.5 / 73.0 70.4 / 93.1 89.1 / 98.1

Table 2: Comparison with state-of-the-art on Kinetics-700, Moments-in-Time, Something-something-
v2 and ActivityNet. The bold numbers and underlined are ranked first and second, respectively. See
text and caption in Table 1 for details.

that our method achieves such improvement withtout large-scale image pre-training and additional242

computational cost.243

We then compare our method with state-of-the-art on these datasets. We train a higher resolution244

model with larger spatial inputs (312p) and achieves better performance compared to recent cross-245

dataset training methods, CoVER [45] and PolyVit [27], on Kinetics-400, and significantly better on246

MiT and SSv2, as shown in Table 1. Note that our model does not use any image training datasets,247

and our model computation cost is only a fraction of the baselines. We also show that our performance248

boost does not come from the additional training dataset of ActivityNet in Table 3.249

Our method also achieves competitive results compared to state-of-the-art models trained with large-250

scale image dataset (ImageNet-21K [9]). Compared to a recent method, MTV-B [41], our method is251

able to achieve significantly better top-1 accuracy across Kinetics-400, MiT, SSv2 by 0.8%, 1.4%,252

0.8%, respectively, at half of the computation cost and without large-scale pre-training. Note that253

our model is parameter-efficient, while multiple MTV-B models need to be trained and tested on254

these datasets separately. Our method can achieve better performance with a deeper base backbone or255

larger resolution inputs but we have not tested due to limitation of computation resources.256

We then compare our method on the Kinetics-700, MiT, SSv2 and ActivityNet training with baselines.257

Our parameter-efficient model can achieve better performance than MTV-B [41] at one-fifth of258

the computation cost. With a larger resolution model at 312p, we achieves significantly better259

performance than the baseline across Kinetics-400, MiT, SSv2 by 2.2%, 4.9%, 3.4%, respectively.260

4.3 Ablation Experiments261

In this section, we perform ablation studies on the K400 set. To understand how action models can262

benefit from our training method, we explore the following questions (results are shown in Table 3):263

Does our proposed robust loss help? We compare our model training with vanilla cross dataset264

training, where multiple classification heads are attached to the same backbone and the model is265

trained simply with cross-entropy loss. The vanilla model is trained from a K400 checkpoint as ours.266

As shown in Table 3, we try training the vanilla model with both the same training schedule as ours267

and a 4x longer schedule. As we see, there is a significant gap between the overall performance of the268

vanilla model and ours, validating the efficacy of our proposed method. Also, longer training schedule269
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method Training Data K400 MiT SSv2 ActNet

CrossRoad K400 + SSv2
+ MiT + ActNet

81.9 / 95.2 41.7 / 71.0 68.9 / 91.6 87.4 / 97.3

Vanilla (50 ep) K400 + SSv2
+ MiT + ActNet 80.1/ 94.0 33.4 / 60.1 60.8 / 89.0 86.5 / 97.1

Vanilla (200 ep) K400 + SSv2
+ MiT + ActNet 80.6 / 94.7 35.1 / 63.9 56.8 / 85.3 86.3 / 97.2

- Informative Loss K400 + SSv2
+ MiT + ActNet 13.5 / 33.4 7.3 / 19.9 9.7 / 28.5 24.8 / 54.3

- Projection Loss K400 + SSv2
+ MiT + ActNet 80.6 / 94.8 39.9 / 69.2 61.5 / 88.0 86.9 / 97.5

- ActNet K400 + SSv2 + MiT 81.4 / 95.0 41.3 / 70.5 68.7 / 91.3 -

Table 3: Ablation experiments. We investigate the effectiveness of each component of our method
as well as compare to vanilla multi-dataset training method. The numbers are top-1/top-5 accuracy,
respectively.

does not lead to better performance on some datasets, including SSv2, suggesting vanilla cross-270

dataset training is unstable. In terms of performance on ActivityNet, we observe that both training271

methods achieve good results, which might be because ActivityNet classes are highly overlapped272

with Kinetics-400 (65 out of 200).273

How important is the informative loss? We then experiment with removing the informative loss274

(Section 3.2) during cross-dataset training. It seems that the feature embedding of the model collapse275

and the model is not trained at all.276

How important is the projection loss? We then experiment with removing the projection heads277

(Section 3.2) during cross-dataset training. The model is trained with the original cross-entropy loss278

and the informative loss. As shown in Table 3, the performance on MiT and SSv2 suffers by a large279

margin, indicating that the projection design helps boost training by better utilizing cross-dataset280

information.281

Does the additional ActivityNet data help? In previous methods like CoVER and PolyViT,282

the ActivityNet dataset has not been used. In this experiment, we investigate the important of283

the ActivityNet dataset by removing it from the training set. From Table 3, we can see that the284

performance across all datasets drop by a small margin, indicating our superior results compared to285

CoVER (see Table 1 and Table 2) come from the proposed robust training paradigm rather than the286

additional data.287

4.4 Discussion288

By cross-dataset training transformers on various datasets, we obtain competitive results on multiple289

action datasets, without large-scale image datasets pre-training. Our method, CrossRoad, is parameter-290

efficient and does not require hyper-parameter tuning. Current limitations of our experiments are that291

we have not tried co-training with image datasets such as ImageNet-21K [9]. Hence we do not know292

how much performance gain that would entail. We plan to explore this in future work. In addition,293

we have not tried training larger model with FLOPs on par with state-of-the-art or other backbone294

architectures (e.g. CNNs) due to limitation of our computational resources. Hence we are not sure295

how our algorithm would behave with these models. Although our model is trained on multiple296

datasets, potential dataset biases can still cause negative societal impact in real-world deployment, as297

the datasets we have do not fully represent all aspects of human actions.298

5 Conclusion299

In this paper, we present CrossRoad, a robust cross-dataset training approach that maximizes300

information content of representation and learns intrinsic relations between individual datasets. Our301

method can train parameter-efficient models that perform well across multiple datasets.302
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