
Under review as a conference paper at ICLR 2021

MC-LSTM: MASS-CONSERVING LSTM

Anonymous authors
Paper under double-blind review

ABSTRACT

The success of Convolutional Neural Networks (CNNs) in computer vision is
mainly driven by their strong inductive bias, which is strong enough to allow CNNs
to solve vision-related tasks with random weights, meaning without learning. Simi-
larly, Long Short-Term Memorys (LSTMs) have a strong inductive bias towards
storing information over time. However, many real-world systems are governed
by conservation laws, which are expressed through continuity equations. These
equations describe the redistribution of stored quantities — e.g. in physical and
economical systems. Our novel Mass-Conserving LSTM (MC-LSTM) adheres to
these conservation laws by extending the inductive bias of LSTM to model the
redistribution of those stored quantities. MC-LSTMs set a new state-of-the-art for
neural arithmetic units at learning arithmetic operations, such as addition tasks,
which have a strong conservation law, as the sum is constant over time. Further,
MC-LSTM is applied to traffic forecasting, modeling a pendulum, and a large
benchmark dataset in hydrology, where it sets a new state-of-the-art for predicting
peak flows. In the hydrology example, we show that MC-LSTM states correlate
with real world processes and are therefore interpretable.

1 INTRODUCTION

Inductive biases enabled the success of CNNs and LSTMs. One of the greatest success stories
of deep learning are Convolutional Neural Networks (CNNs) (Fukushima, 1980; LeCun & Bengio,
1998; Schmidhuber, 2015; LeCun et al., 2015) whose proficiency can be attributed to their strong
inductive bias towards visual tasks (Cohen & Shashua, 2017; Gaier & Ha, 2019). The effect of this
inductive bias has been demonstrated by CNNs that solve vision-related tasks with random weights,
meaning without learning (He et al., 2016; Gaier & Ha, 2019; Ulyanov et al., 2020). Another success
story is Long Short-Term Memory (LSTM) (Hochreiter, 1991; Hochreiter & Schmidhuber, 1997),
which has a strong inductive bias toward storing information through its memory cells. This inductive
bias allows LSTM to excel at speech, text, and language tasks, as well as timeseries prediction. Even
with random weights and only a learned linear output layer LSTM is better at predicting timeseries
than reservoir methods (Schmidhuber et al., 2007). In a seminal paper on biases in machine learning,
Mitchell (1980) stated that “biases and initial knowledge are at the heart of the ability to generalize
beyond observed data”. Therefore, choosing an appropriate architecture and inductive bias for deep
neural networks is key to generalization.

Mechanisms beyond storing are required for real-world applications. While LSTM can store
information over time, real-world applications require mechanisms that go beyond storing. Many
real-world systems are governed by conservation laws related to mass, energy, momentum, charge, or
particle counts, which are often expressed through continuity equations. In physical systems, different
types of energies, mass or particles have to be conserved (Evans & Hanney, 2005; Rabitz et al., 1999;
van der Schaft et al., 1996), in hydrology it is the amount of water (Freeze & Harlan, 1969; Beven,
2011), in traffic and transportation the number of vehicles (Vanajakshi & Rilett, 2004; Xiao & Duan,
2020; Zhao et al., 2017), and in logistics the amount of goods, money or products. A real-world
task could be to predict outgoing goods from a warehouse based on a general state of the warehouse,
i.e., how many goods are in storage, and incoming supplies. If the predictions are not precise, then
they do not lead to an optimal control of the production process. For modeling such systems, certain
inputs must be conserved but also redistributed across storage locations within the system. We will
refer to conserved inputs as mass, but note that this can be any type of conserved quantity. We argue

1

Under review as a conference paper at ICLR 2021

that for modeling such systems, specialized mechanisms should be used to represent locations &
whereabouts, objects, or storage & placing locations and thus enable conservation.

Conservation laws should pervade machine learning models in the physical world. Since a
large part of machine learning models are developed to be deployed in the real world, in which
conservation laws are omnipresent rather than the exception, these models should adhere to them
automatically and benefit from them. However, standard deep learning approaches struggle at
conserving quantities across layers or timesteps (Beucler et al., 2019b; Greydanus et al., 2019; Song
& Hopke, 1996; Yitian & Gu, 2003), and often solve a task by exploiting spurious correlations
(Szegedy et al., 2014; Lapuschkin et al., 2019). Thus, an inductive bias of deep learning approaches
via mass conservation over time in an open system, where mass can be added and removed, could
lead to a higher generalization performance than standard deep learning for the above-mentioned
tasks.

A mass-conserving LSTM. In this work, we introduce Mass-Conserving LSTM (MC-LSTM),
a variant of LSTM that enforces mass conservation by design. MC-LSTM is a recurrent neural
network with an architecture inspired by the gating mechanism in LSTMs. MC-LSTM has a strong
inductive bias to guarantee the conservation of mass. This conservation is implemented by means
of left-stochastic matrices, which ensure the sum of the memory cells in the network represents the
current mass in the system. These left-stochastic matrices also enforce the mass to be conserved
through time. The MC-LSTM gates operate as control units on mass flux. Inputs are divided into
a subset of mass inputs, which are propagated through time and are conserved, and a subset of
auxiliary inputs, which serve as inputs to the gates for controlling mass fluxes. We demonstrate that
MC-LSTMs excel at tasks where conservation of mass is required and that it is highly apt at solving
real-world problems in the physical domain.

Contributions. We propose a novel neural network architecture based on LSTM that conserves
quantities, such as mass, energy, or count, of a specified set of inputs. We show properties of this
novel architecture, called MC-LSTM, and demonstrate that these properties render it a powerful
neural arithmetic unit. Further, we show its applicability in real-world areas of traffic forecasting and
modeling the pendulum. In hydrology, large-scale benchmark experiments reveal that MC-LSTM
has powerful predictive quality and can supply interpretable representations.

2 MASS-CONSERVING LSTM

The original LSTM introduced memory cells to Recurrent Neural Networks (RNNs), which alleviate
the vanishing gradient problem (Hochreiter, 1991). This is achieved by means of a fixed recurrent
self-connection of the memory cells. If we denote the values in the memory cells at time t by ct, this
recurrence can be formulated as

ct = ct−1 + f(xt,ht−1). (1)

Here, x and h are, respectively, the forward inputs and recurrent inputs, and f is some function that
computes the increment for the memory cells.

MC-LSTMs modify this recurrence to guarantee the conservation of the mass input.The key idea is
to use the memory cells from LSTMs as mass accumulators, or mass storage. The conservation law
is implemented by three architectural changes. First, the increment, computed by f in Eq. (1), has to
distribute mass from inputs into accumulators. Second, the mass that leaves MC-LSTM must also
disappear from the accumulators. Third, mass has to be redistributed between mass accumulators.
These changes mean that all gates explicitly represent mass fluxes.

Since, in general, not all inputs must be conserved, we distinguish between mass inputs, x, and
auxiliary inputs, a. The former represent the quantity to be conserved and will fill the mass
accumulators in MC-LSTM. The auxiliary inputs are used to control the gates. To keep the notation
uncluttered, and without loss of generality, we use a single mass input at each timestep, xt, to
introduce the architecture.

2

Under review as a conference paper at ICLR 2021

Figure 1: Schematic representation of the main
operations in the MC-LSTM architecture (adapted
from: Olah, 2015).

The forward pass of MC-LSTM at timestep t
can be specified as follows:

mt
tot = R

t · ct−1 + it · xt (2)

ct = (1− ot)�mt
tot (3)

ht = ot �mt
tot. (4)

where it and ot are the input- and output gates,
respectively, andR is a positive left-stochastic
matrix, i.e. 1 ·R = 1, for redistributing mass
in the accumulators. The total massmtot is the
redistributed massRt ·ct−1 plus the mass influx,
or new mass, it · xt. The current mass in the
system is stored in ct.

Note the differences between Eq. (1) and Eq. (3). First, the increment of the memory cells no
longer depends on ht. Instead, mass inputs are distributed by means of the normalized i (see Eq. 5).
Furthermore,Rt replaces the implicit identity matrix of LSTM to redistribute mass among memory
cells. Finally, Eq. (3) introduces 1 − ot as a forget gate on the total mass, mtot. Together with
Eq. (4), this assures that no outgoing mass is stored in the accumulators. This formulation has some
similarity to Gated Recurrent Units (GRU) (Cho et al., 2014), however the gates are not used for
mixing the old and new cell state, but for splitting off the output.

Basic gating and redistribution. The MC-LSTM gates at timestep t are computed as follows:

it = softmax(W i · at +U i ·
ct−1

‖ct−1‖1
+ bi) (5)

ot = σ(W o · at +Uo ·
ct−1

‖ct−1‖1
+ bo) (6)

Rt = softmax(Br), (7)

where the softmax operator is applied column-wise, σ is the logistic sigmoid function, andW i, bi,
W o, bo, andBr are learnable model parameters. An alternative way to ensure a column-normalized
matrixRt is to use a normalized logistic, σ̃(rkj) =

σ(rkj)∑
n σ(rkn)

. Note that MC-LSTMs compute the
gates from the memory cells, directly. This is in contrast with the original LSTM, which uses the
activations from the previous time step. The accumulated values from the memory cells, ct, are
normalized to counter saturation of the sigmoids. We use this variation e.g. in our experiments with
neural arithmetics (see Sec. 5.1).

Time-dependent redistribution. It can also be useful to predict a redistribution matrix for each
sample and timestep, similar to how the gates are computed:

Rt = softmax

(
Wr · at + Ur ·

ct−1

‖ct−1‖1
+Br

)
, (8)

where the parameters Wr and Ur are weight tensors and their multiplications result inK×K matrices.
Again, the softmax function is applied column-wise. This version collapses to a time-independent
redistribution matrix if Wr and Ur are equal to 0. Thus, there exists the option to initialize Wr and
Ur with weights that are small in absolute value compared to the weights ofBr, to favour learning
time-independent redistribution matrices. We use this variant in the hydrology experiments (see
Sec. 5.4).

Redistribution via a hypernetwork. Even more general, a hypernetwork (Schmidhuber, 1992; Ha
et al., 2017) that we denote with g can be used to procure R. The hypernetwork has to produce
a column-normalized, square matrix Rt = g(a0, . . . ,at, c0, . . . , ct−1). Notably, a hypernetwork
can be used to design an autoregressive version of MC-LSTMs, if the network additionally predicts
auxiliary inputs for the next time step. We use this variant in the pendulum experiments (see Sec. 5.3).

3

Under review as a conference paper at ICLR 2021

3 PROPERTIES

Conservation. MC-LSTM guarantees that mass is conserved over time. This is a direct conse-
quence of connecting memory cells with stochastic matrices. The mass conservation ensures that no
mass can be removed or added implicitly, which makes it easier to learn functions that generalize
well. The exact meaning of this mass conservation is formalized in Theorem 1.

Theorem 1 (Conservation property). Let mτ
c =

∑K
k=1 c

τ
k be the mass contained in the system and

mτ
h =

∑K
k=1 h

τ
k be the mass efflux, or, respectively, the accumulated mass in the MC-LSTM storage

and the outputs at time τ . At any timestep τ , we have:

mτ
c = m0

c +

τ∑
t=1

xt −
τ∑
t=1

mt
h. (9)

That is, the change of mass in the memory cells is the difference between the input and output mass,
accumulated over time.

The proof is by induction over τ (see Appendix C). Note that it is still possible for input mass to
be stored indefinitely in a memory cell so that it does not appear at the output. This can be a useful
feature if not all of the input mass is needed at the output. In this case, the network can learn that one
cell should operate as a collector for excess mass in the system.

Boundedness of cell states. In each timestep τ , the memory cells, cτk, are bounded by the sum of
mass inputs

∑τ
t=1 x

t +m0
c , that is |cτk| ≤

∑τ
t=1 x

t +m0
c . Furthermore, if the series of mass inputs

converges, limτ→∞
∑τ
t=1 x

τ = m∞x , then also the sum of cell states converges (see Appendix,
Corollary 1).

Potential interpretability through inductive bias and accessible mass in cell states. The repre-
sentations within the model can be interpreted directly as accumulated mass. If one mass or energy
quantity is known, the MC-LSTM architecture would allow to force a particular cell state to represent
this quantity, which could facilitate learning and interpretability. An illustrative example is the case
of rainfall runoff modelling, where observations, say of the soil moisture or groundwater-state, could
be used to guide the learning of an explicit memory cell of MC-LSTM.

4 SPECIAL CASES AND RELATED WORK

Relation to Markov chains. In a special case MC-LSTM collapses to a finite Markov chain, when
c0 is a probability vector, the mass input is zero xt = 0 for all t, there is no input and output gate, and
the redistribution matrix is constant over timeRt = R. For finite Markov chains, the dynamics are
known to converge, ifR is irreducible (see e.g. Hairer (2018, Theorem 3.13.)). Awiszus & Rosenhahn
(2018) aim to model a Markov Chain by having a feed-forward network predict the state distribution
given the current state distribution. In order to insert randomness to the network, a random seed is
appended to the input, which allows to simulate Markov processes. Although MC-LSTMs are closely
related to Markov chains, they do not explicitly learn the transition matrix, as is the case for Markov
chain neural networks. MC-LSTMs would have to learn the transition matrix implicitly.

Relation to normalizing flows and volume-conserving neural networks In contrast to normal-
izing flows. (Rezende & Mohamed, 2015; Papamakarios et al., 2019), which transform inputs in
each layer and trace their density through layers or timesteps, MC-LSTMs transform distributions
and do not aim to trace individual inputs through timesteps. Normalizing flows thereby conserve
information about the input in the first layer and can use the inverted mapping to trace an input back
to the initial space. MC-LSTMs are concerned with modeling the changes of the initial distribution
over time and can guarantee that a multinomial distribution is mapped to a multinomial distribution.
For MC-LSTMs, the sequence of cell states c0, . . . , cT without gates constitutes a normalizing flow
if an initial distribution p0(c0) is available. In more detail, MC-LSTM can be considered a linear
flow with the mapping ct+1 = Rtct and p(ct+1) = p(ct)|detRt|−1 in this case. The gate providing
the redistribution matrix (see Eq.(8)) is the conditioner in a normalizing flow model. From the

4

Under review as a conference paper at ICLR 2021

perspective of normalizing flows, MC-LSTM can be considered as a flow trained in a supervised
fashion. Deco & Brauer (1995) proposed volume-conserving neural networks, which conserve the
volume spanned by input vectors and thus the information of the starting point of an input is kept. In
other words, they are constructed so that the Jacobians of the mapping from one layer to the next have
a determinant of 1. In contrast, the MC-LSTMs determinant of the Jacobians (of the mapping) is
smaller than 1 (except for degenerate cases), which means that volume of the inputs is not conserved.

Relation to Layer-wise Relevance Propagation. Layer-wise Relevance Propagation (LRP) (Bach
et al., 2015) is similar to our approach with respect to the idea that the sum of a quantity, the
relevance Ql is conserved over layers l. LRP aims to maintain the sum of the relevance values∑I
k=1Q

l−1
i =

∑I
k=1Q

l−1
i backward through a classifier in order to a obtain relevance values for

each input feature.

Relation to other networks that conserve particular properties. While a standard feed-forward
neural network does not give guarantees aside from the conservation of the proximity of datapoints
through the continuity property. The conservation of the first moments of the data distribution in
the form of normalization techniques (Ioffe & Szegedy, 2015) has had tremendous success. Here,
batch normalization (Ioffe & Szegedy, 2015) could exactly conserve mean and variance across layers,
whereas self-normalization (Klambauer et al., 2017) conserves those approximately. The conservation
of the spectral norm of each layer in the forward pass has enabled the stable training of generative
adversarial networks (Miyato et al., 2018). The conservation of the spectral norm of the errors
through the backward pass of an RNN has enabled the avoidance of the vanishing gradient problem
(Hochreiter, 1991; Hochreiter & Schmidhuber, 1997). In this work, we explore an architecture that
exactly conserves the mass of a subset of the input, where mass is defined as a physical quantity such
as mass or energy.

Relation to neural networks for physical systems. MC-LSTM can be seen as a neural network
architecture with physical constraints (Karpatne et al., 2017; Beucler et al., 2019c). It is however
also possible to impose conservation laws by using other means, e.g. initialization, constrained
optimization or soft constraints (as, for example, proposed by Karpatne et al., 2017; Beucler et al.,
2019c;a). Hamiltonian neural networks make energy conserving predictions by using the Hamiltonian
(Greydanus et al., 2019), a function that maps the inputs to the quantity that needs to be conserved. By
using the symplectic gradients, it is possible to move around in the input space, without changing the
output of the Hamiltonian. Since this requires knowledge about the time-derivatives w.r.t. inputs, it is
not applicable to our scenario. Furthermore, the Hamiltonian Neural Network approach is restricted
to closed physical systems. Raissi et al. (2019) propose to enforce physical constraints on simple
feed-forward networks by computing the partial derivatives with respect to the inputs and computing
the partial differential equations explicitly with the resulting terms. This approach, while promising,
does require an exact knowledge of the governing equations. By contrast, our approach is able to
learn its own representation of the underlying process, while obeying the pre-specified conservation
properties.

5 EXPERIMENTS

In the following, we discuss the experiments we conducted to demonstrate the broad applicability and
high predictive performance of MC-LSTM in settings where mass conservation is required. For more
details on the datasets and hyperparameter selection for each experiment, we refer to Appendix B.

5.1 ARITHMETIC TASKS

Addition problem. We first considered a problem for which exact mass conservation is required.
One example for such a problem has been described in the original LSTM paper (Hochreiter &
Schmidhuber, 1997), showing that LSTM is capable of summing two arbitrarily marked elements in a
sequence of random numbers. We show that MC-LSTM is able to solve this task, but also generalizes
better to longer sequences, input values in a different range and more summands. Table 1 summarizes
the results of this method comparison and shows that MC-LSTM significantly outperformed the other
models on all tests (p-value ≤ 0.03, Wilcoxon test).

5

Under review as a conference paper at ICLR 2021

Table 1: Performance of different models on the LSTM addition task in terms of the MSE. MC-LSTM
significantly (all p-values below .05) outperforms its competitors, LSTM (with high initial forget
gate bias), NALU and NAU. Error bars represent 95%-confidence intervals across 100 runs.

referencea seq lengthb input rangec countd comboe NaNf

MC-LSTM 0.004 ± 0.003 0.009 ± 0.004 0.8 ± 0.5 0.6 ± 0.4 4.0 ± 2.5 0
LSTM 0.008 ± 0.003 0.727 ± 0.169 21.4 ± 0.6 9.5 ± 0.6 54.6 ± 1.0 0
NALU 0.060 ± 0.008 0.059 ± 0.009 25.3 ± 0.2 7.4 ± 0.1 63.7 ± 0.6 93
NAU 0.248 ± 0.019 0.252 ± 0.020 28.3 ± 0.5 9.1 ± 0.2 68.5 ± 0.8 24
a training regime: summing 2 out of 100 numbers between 0 and 0.5.
b longer sequence lengths: summing 2 out of 1 000 numbers between 0 and 0.5.
c more mass in the input: summing 2 out of 100 numbers between 0 and 5.0.
d higher number of summands: summing 20 out of 100 numbers between 0 and 0.5.
e combination of previous scenarios: summing 10 out of 500 numbers between 0 and 2.5.
f Number of runs that did not converge.

●

●

●
●●

●

● ● ● ● ● ●

Success rate

1 10 200 400 600 800 1000

0.00

0.25

0.50

0.75

1.00

Sequence length

● ●MC-LSTM NAU

Figure 2: MNIST arithmetic task results for
MC-LSTM and NAU. The task is to correctly
predict the sum of a sequence of presented
MNIST digits. The success rates are depicted
on the y-axis in dependency of the length of
the sequence (x-axis) of MNIST digits. Error
bars represent 95%-confidence intervals.

Recurrent arithmetic. Following Madsen & Jo-
hansen (2020), the inputs for this task are sequences
of vectors, uniformly drawn from [1, 2]100. For each
vector in the sequence, the sum over two random
subsets is calculated. Those values are then summed
over time, leading to two values. The target output
is obtained by applying the arithmetic operation to
these two values. The auxiliary input for MC-LSTM
is a sequence of ones, where the last element is −1
to signal the end of the sequence.

We evaluated MC-LSTM against NAUs and Neural
Accumulators (NACs) directly in the framework
of Madsen & Johansen (2020). NACs and NAUs
use the architecture as presented in (Madsen & Jo-
hansen, 2020). That is, a single hidden layer with
two neurons, where the first layer is recurrent. The
MC-LSTM model has two layers, of which the sec-
ond one is a fully connected linear layer. For subtrac-
tion an extra cell was necessary to properly discard
redundant input mass.

For testing, we took the model with the lowest validation error, c.f. early stopping. The perfor-
mance was measured by the percentage of runs that successfully generalized to longer sequences.
Generalization is considered successful if the error is lower than the numerical imprecision of the
exact operation (Madsen & Johansen, 2020). The summary in Tab. 2 shows that MC-LSTM was
able to significantly outperform the competing models (p-value 0.03 for addition and 3e − 6 for
multiplication, proportion test).

Static arithmetic. To enable a direct comparison with the results reported in Madsen & Johansen
(2020), we also compared MC-LSTM on the static arithmetic task, see Appendix B.1.3.

MNIST arithmetic. We tested that feature extractors can be learned from MNIST images (LeCun
et al., 1998) to perform arithmetic on the images (Madsen & Johansen, 2020). The input is a sequence
of MNIST images and the target output is the corresponding sum of the labels. Auxiliary inputs are
all 1, except the last entry, which is −1, to indicate the end of the sequence. The models are the
same as in the recurrent arithmetic task with CNN to convert the images to (mass) inputs for these
networks. The network is learned end-to-end. L2-regularization is added to the output of CNN to
prevent its outputs from growing arbitrarily large. The results for this experiment are depicted in
Fig. 2. MC-LSTM significantly outperforms the state-of-the-art, NAU (p-value 0.002, Binomial test).

6

Under review as a conference paper at ICLR 2021

Table 2: Recurrent arithmetic task results. MC-LSTMs for addition and subtraction/multiplication
have two and three neurons, respectively. Error bars represent 95%-confidence intervals.

addition subtraction multiplication

success ratea updatesb success ratea updatesb success ratea updatesb

MC-LSTM 96% +2%
−6% 4.6 · 105 81% +6%

−9% 1.2 · 105 67% +8%
−10% 1.8 · 105

NAU / NMU 88% +5%
−8% 8.1 · 104 60% +9%

−10% 6.1 · 104 34% +10%
−9% 8.5 · 104

NAC 56% +5%
−8% 3.2 · 105 86% +5%

−8% 4.5 · 104 0% +4%
−0% –

NALU 10% +7%
−4% 1.0 · 106 0% +4%

−0% – 0% +4%
−0% –

a Percentage of runs that generalized to longer sequences.
b Median number of updates necessary to solve the task.

5.2 INBOUND-OUTBOUND TRAFFIC FORECASTING

Figure 3: Schematic depiction of inbound-
outbound traffic situations that require the
conservation-of-vehicles principle. All vehicles
on outbound roads (yellow arrows) must have
entered the city center before (green arrows) or
have been present in the first timestep.

We examined the usage of MC-LSTMs for traf-
fic forecasting in situations in which inbound and
outbound traffic counts of a city are available (see
Fig. 3). For this type of data, a conservation-of-
vehicles principle (Nam & Drew, 1996) must hold,
since vehicles can only leave the city if they have
entered it before or had been there in the first place.
Based on data for the traffic4cast 2020 challenge
(Kreil et al., 2020), we constructed a dataset to
model inbound and outbound traffic in three dif-
ferent cities: Berlin, Istanbul and Moscow. We
compared MC-LSTM against LSTM, which is the
state-of-the-art method for several types of traffic
forecasting situations (Zhao et al., 2017; Tedjop-
urnomo et al., 2020), and found that MC-LSTM
significantly outperforms LSTM in this traffic fore-
casting setting (all p-values ≤ 0.01, Wilcoxon
test). For details, see Appendix B.2.

5.3 PENDULUM WITH FRICTION

Figure 4: Example for the pendulum-modelling
exercise. (a) LSTM trained for predicting en-
ergies of the pendulum with friction in auto-
regressive fashion, (b) MC-LSTM trained in the
same setting. Each subplot shows the potential-
and kinetic energy and the respective predic-
tions.

In the area of physics, we examined the usability of
MC-LSTM for the problem of modeling a swing-
ing pendulum with friction. Here, the total energy
is the conserved property. During the movement
of the pendulum, kinetic energy is converted into
potential energy and vice-versa. Accounting for
friction, energy dissipates and the swinging slows
over time until towards a fixed point.This type of
behavior presents a difficulty for machine learn-
ing and is impossible for methods that assume the
pendulum to be a closed system, such as Hamilto-
nian networks (Greydanus et al., 2019). We gener-
ated 120 datasets of timeseries data of a pendulum
where we used multiple different settings for initial
angle, length of the pendulum, and the amount of
friction. We then selected LSTM and MC-LSTM
models and compared them with respect to predic-
tive MSE. For an example, see Fig. 4. Overall, MC-LSTM has significantly outperformed LSTM
with a mean MSE of 0.01 (standard deviation 0.04) compared to 0.05 (standard deviation 0.15; with
a p-value 6.9e− 08, Wilcoxon test).

7

Under review as a conference paper at ICLR 2021

5.4 HYDROLOGY: RAINFALL RUNOFF MODELING

We tested MC-LSTM for large-sample hydrological modeling following Kratzert et al. (2019c). An
ensemble of 10 MC-LSTMs was trained on 10 years of data from 447 basins using the publicly-
available CAMELS dataset (Newman et al., 2015; Addor et al., 2017a). The mass input is precipitation
and auxiliary inputs are: daily min. and max. temperature, solar radiation, and vapor pressure, plus 27
basin characteristics related to geology, vegetation, and climate (described by Kratzert et al., 2019c).
All models besides MC-LSTM and LSTM were trained by different research groups with experience
using each model. More details are given in Appendix B.4.2.

Table 3: Hydrology benchmark results. All val-
ues represent the median (25% and 75% per-
centile in sub- and superscript, respectively)
over the 447 basins. Only the two best per-
forming hydrological models are included. An
extended version can be found in Tab. B.6.

Model MCa FHVb NSEc

MC-LSTM 3 -14.7−7.0−23.4 0.7440.814
0.641

LSTM 7 -15.7−8.6−23.8 0.7630.835
0.676

mHM 3 -18.6−9.5−27.7 0.6660.730
0.588

...
HBVub 3 -18.5−8.5−27.8 0.6760.749

0.578

a: Mass conservation (MC).
b: Top 2% peak flow bias: (−∞,∞), values closer
to zero are desirable.
c: Nash-Sutcliffe Efficiency: (−∞, 1], values closer
to one are desirable.

As shown in Tab. 3 MC-LSTM performed better
with respect to the Nash–Sutcliffe Efficiency (NSE;
the R2 between simulated and observed runoff) than
any other mass-conserving hydrology model, al-
though slightly worse than LSTM.

NSE is often not the most important metric in hydrol-
ogy, since water managers are typically concerned
primarily with extremes (e.g. floods). MC-LSTM
performed significantly better (p = 0.025, Wilcoxon
test) than all models, including LSTM, with respect
to high volume flows (FHV), at or above the 98th per-
centile flow in each basin. This makes MC-LSTM
the current state-of-the-art model for flood predic-
tion. MC-LSTM also performed significantly better
than LSTM on low volume flows (FLV) and over-
all bias, however there are other hydrology models
that are better for predicting low flows (which is
important, e.g. for managing droughts).

Model states and environmental processes. It is
an open challenge to bridge the gap between the fact that LSTM approaches give generally better
predictions than other models (especially for flood prediction) and the fact that water managers need
predictions that help them understand not only how much water will be in a river at a given time, but
also how water moves through a basin.

Snow processes are difficult to observe and model. Kratzert et al. (2019a) showed that LSTM learns
to track snow in memory cells without requiring snow data for training. We found similar behavior in
MC-LSTMs, which has the advantage of doing this with memory cells that are true mass storages.
Figure 5 shows the snow as the sum over a subset of MC-LSTM memory states and snow water
equivalent (SWE) modeled by a traditional hydrology model (r ≥ 0.91). It is important to remember
that MC-LSTMs did not have access to any snow data during training. In the best case it is possible
to take advantage of the inductive bias to predict how much water will be stored as snow under
different conditions by using simple combinations or mixtures of the internal states. Future work will
determine whether this is possible with other difficult-to-observe states and fluxes.

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
Date

0

200

400

SW
E

(m
m

) Snow Water Equivalent (mm)
Sum of MC-LSTM 'snow' cells

Figure 5: Snow-water-equivalent (SWE) from a single basin. The blue line is SWE modeled by
Newman et al. (2015). The orange line is the sum over 4 MC-LSTM memory cells (r ≥ 0.8).

Conclusion. We have demonstrated that with the concept of inductive biases an RNN can be designed
that has the property to conserve mass of particular inputs. This architecture is highly proficient as
neural arithmetic unit and is well-suited for predicting physical systems like hydrological processes,
in which water mass has to be conserved.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Nans Addor, Andrew J Newman, Naoki Mizukami, and Martyn P Clark. The camels data set:
catchment attributes and meteorology for large-sample studies. Hydrology and Earth System
Sciences (HESS), 21(10):5293–5313, 2017a.

Nans Addor, Andrew J. Newman, Naoki Mizukami, and Martyn P. Clark. Catchment attributes for
large-sample studies. Boulder, CO: UCAR/NCAR, 2017b.

Maren Awiszus and Bodo Rosenhahn. Markov chain neural networks. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2261–22617, 2018.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):1–46, 2015.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Systems
28, pp. 1171–1179. Curran Associates, Inc., 2015.

Tom Beucler, Michael Pritchard, Stephan Rasp, Pierre Gentine, Jordan Ott, and Pierre Baldi. Enforc-
ing analytic constraints in neural-networks emulating physical systems, 2019a.

Tom Beucler, Stephan Rasp, Michael Pritchard, and Pierre Gentine. Achieving conservation of energy
in neural network emulators for climate modeling. arXiv preprint arXiv:1906.06622, 2019b.

Tom Beucler, Stephan Rasp, Michael Pritchard, and Pierre Gentine. Achieving conservation of energy
in neural network emulators for climate modeling. ICML Workshop “Climate Change: How Can
AI Help?”, 2019c.

Keith Beven. Deep learning, hydrological processes and the uniqueness of place. Hydrological
Processes, 34(16):3608–3613, 2020.

Keith J Beven. Rainfall-runoff modelling: the primer. John Wiley & Sons, 2011.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pp. 1724–1734. Association for Computational Linguistics, 2014.

N. Cohen and A. Shashua. Inductive bias of deep convolutional networks through pooling geometry.
In International Conference on Learning Representations, 2017.

Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. Traffic graph convolutional
recurrent neural network: A deep learning framework for network-scale traffic learning and
forecasting. IEEE Transactions on Intelligent Transportation Systems, 2019.

Gustavo Deco and Wilfried Brauer. Nonlinear higher-order statistical decorrelation by volume-
conserving neural architectures. Neural Networks, 8(4):525–535, 1995. ISSN 0893-6080.

Stanislas Dehaene. The number sense: How the mind creates mathematics. Oxford University Press,
2 edition, 2011. ISBN 9780199753871.

Martin R Evans and Tom Hanney. Nonequilibrium statistical mechanics of the zero-range process
and related models. Journal of Physics A: Mathematical and General, 38(19):R195, 2005.

R Allan Freeze and RL Harlan. Blueprint for a physically-based, digitally-simulated hydrologic
response model. Journal of Hydrology, 9(3):237–258, 1969.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, 1980.

A. Gaier and D. Ha. Weight agnostic neural networks. In Advances in Neural Information Processing
Systems 32, pp. 5364–5378. Curran Associates, Inc., 2019.

9

Under review as a conference paper at ICLR 2021

C. R. Gallistel. Finding numbers in the brain. Philosophical Transactions of the Royal Society B:
Biological Sciences, 373(1740), 2018. doi: 10.1098/rstb.2017.0119.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In Advances
in Neural Information Processing Systems 32, pp. 15353–15363. Curran Associates, Inc., 2019.

David Ha, Andrew Dai, and Quoc Le. Hypernetworks. In International Conference on Learning
Representations, 2017.

M. Hairer. Ergodic properties of markov processes. Lecture notes, 2018.

K. He, Y. Wang, and J. Hopcroft. A powerful generative model using random weights for the deep
image representation. In Advances in Neural Information Processing Systems 29, pp. 631–639.
Curran Associates, Inc., 2016.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. PhD thesis, Technische
Universität München, 1991.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine
Learning, volume 37, pp. 448–456. PMLR, 2015.

Anuj Karpatne, Gowtham Atluri, James H Faghmous, Michael Steinbach, Arindam Banerjee, Auroop
Ganguly, Shashi Shekhar, Nagiza Samatova, and Vipin Kumar. Theory-guided data science: A
new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data
Engineering, 29(10):2318–2331, 2017.

Diederik P. Kingma and Ba Jimmy. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in neural information processing systems 30, pp. 971–980, 2017.

Frederik Kratzert, Daniel Klotz, Claire Brenner, Karsten Schulz, and Mathew Herrnegger. Rainfall–
runoff modelling using long short-term memory (lstm) networks. Hydrology and Earth System
Sciences, 22(11):6005–6022, 2018.

Frederik Kratzert, Mathew Herrnegger, Daniel Klotz, Sepp Hochreiter, and Günter Klambauer.
NeuralHydrology–Interpreting LSTMs in Hydrology, pp. 347–362. Springer, 2019a.

Frederik Kratzert, Daniel Klotz, Mathew Herrnegger, Alden K Sampson, Sepp Hochreiter, and Grey S
Nearing. Toward improved predictions in ungauged basins: Exploiting the power of machine
learning. Water Resources Research, 55(12):11344–11354, 2019b.

Frederik Kratzert, Daniel Klotz, Guy Shalev, Günter Klambauer, Sepp Hochreiter, and Grey Nearing.
Towards learning universal, regional, and local hydrological behaviors via machine learning applied
to large-sample datasets. Hydrology and Earth System Sciences, 23(12):5089–5110, 2019c.

Frederik Kratzert, Daniel Klotz, Sepp Hochreiter, and Grey Nearing. A note on leveraging synergy in
multiple meteorological datasets with deep learning for rainfall-runoff modeling. Hydrology and
Earth System Sciences Discussions, 2020:1–26, 2020.

David P Kreil, Michael K Kopp, David Jonietz, Moritz Neun, Aleksandra Gruca, Pedro Herruzo,
Henry Martin, Ali Soleymani, and Sepp Hochreiter. The surprising efficiency of framing geo-spatial
time series forecasting as a video prediction task–insights from the iarai traffic4cast competition at
neurips 2019. In NeurIPS 2019 Competition and Demonstration Track, pp. 232–241. PMLR, 2020.

Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek,
and Klaus-Robert Müller. Unmasking clever hans predictors and assessing what machines really
learn. Nature communications, 10(1):1–8, 2019.

10

Under review as a conference paper at ICLR 2021

Y. LeCun and Y. Bengio. Convolutional Networks for Images, Speech, and Time Series, pp. 255–258.
MIT Press, Cambridge, MA, USA, 1998.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Yang Liu, Zhiyuan Liu, and Ruo Jia. Deeppf: A deep learning based architecture for metro passenger
flow prediction. Transportation Research Part C: Emerging Technologies, 101:18–34, 2019.

Andreas Madsen and Alexander Rosenberg Johansen. Neural arithmetic units. In International
Conference on Learning Representations, 2020.

T. M. Mitchell. The need for biases in learning generalizations. Technical Report CBM-TR-117,
Rutgers University, Computer Science Department, New Brunswick, NJ, 1980.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.

Naoki Mizukami, Martyn P. Clark, Andrew J. Newman, Andrew W. Wood, Ethan D. Gutmann,
Bart Nijssen, Oldrich Rakovec, and Luis Samaniego. Towards seamless large-domain parameter
estimation for hydrologic models. Water Resources Research, 53(9):8020–8040, 2017.

Naoki Mizukami, Oldrich Rakovec, Andrew J Newman, Martyn P Clark, Andrew W Wood, Hoshin V
Gupta, and Rohini Kumar. On the choice of calibration metrics for “high-flow” estimation using
hydrologic models. Hydrology and Earth System Sciences, 23(6):2601–2614, 2019.

Do H Nam and Donald R Drew. Traffic dynamics: Method for estimating freeway travel times in real
time from flow measurements. Journal of Transportation Engineering, 122(3):185–191, 1996.

Grey S. Nearing, Yudong Tian, Hoshin V. Gupta, Martyn P. Clark, Kenneth W. Harrison, and Steven V.
Weijs. A philosophical basis for hydrological uncertainty. Hydrological Sciences Journal, 61(9):
1666–1678, 2016.

AJ Newman, K Sampson, MP Clark, A Bock, RJ Viger, and D Blodgett. A large-sample watershed-
scale hydrometeorological dataset for the contiguous USA. Boulder, CO: UCAR/NCAR, 2014.

AJ Newman, MP Clark, Kevin Sampson, Andrew Wood, LE Hay, A Bock, RJ Viger, D Blodgett,
L Brekke, JR Arnold, et al. Development of a large-sample watershed-scale hydrometeorological
data set for the contiguous USA: data set characteristics and assessment of regional variability in
hydrologic model performance. Hydrology and Earth System Sciences, 19(1):209–223, 2015.

Andrew J Newman, Naoki Mizukami, Martyn P Clark, Andrew W Wood, Bart Nijssen, and Grey
Nearing. Benchmarking of a physically based hydrologic model. Journal of Hydrometeorology,
18(8):2215–2225, 2017.

Andreas Nieder. The neuronal code for number. Nature Reviews Neuroscience, 17(6):366–382, 2016.
doi: https://doi.org/10.1038/nrn.2016.40.

Christopher Olah. Understanding LSTM networks, 2015. URL https://colah.github.io/
posts/2015-08-Understanding-LSTMs/.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Technical report,
DeepMind, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

11

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Under review as a conference paper at ICLR 2021

Herschel Rabitz, Ömer F Aliş, Jeffrey Shorter, and Kyurhee Shim. Efficient input—output model
representations. Computer physics communications, 117(1-2):11–20, 1999.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Oldrich Rakovec, Naoki Mizukami, Rohini Kumar, Andrew J Newman, Stephan Thober, Andrew W
Wood, Martyn P Clark, and Luis Samaniego. Diagnostic evaluation of large-domain hydro-
logic models calibrated across the contiguous united states. Journal of Geophysical Research:
Atmospheres, 124(24):13991–14007, 2019.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Proceedings
of the 32nd International Conference on Machine Learning, volume 37, pp. 1530–1538. PMLR,
2015.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks. In International Conference on Learning
Representations, 2014.

J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez. Training recurrent networks by Evolino.
Neural Computation, 19(3):757–779, 2007.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015.

Jan Seibert, Marc J. P. Vis, Elizabeth Lewis, and H. J. van Meerveld. Upper and lower benchmarks in
hydrological modelling. Hydrological Processes, 32(8):1120–1125, 2018.

SL Sellars. “grand challenges” in big data and the earth sciences. Bulletin of the American Meteoro-
logical Society, 99(6):ES95–ES98, 2018.

Xin-Hua Song and Philip K Hopke. Solving the chemical mass balance problem using an artificial
neural network. Environmental science & technology, 30(2):531–535, 1996.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning
Representations, 2014.

David Alexander Tedjopurnomo, Zhifeng Bao, Baihua Zheng, Farhana Choudhury, and AK Qin.
A survey on modern deep neural network for traffic prediction: Trends, methods and challenges.
IEEE Transactions on Knowledge and Data Engineering, 2020.

E. Todini. Rainfall-runoff modeling — past, present and future. Journal of Hydrology, 100(1):
341–352, 1988. ISSN 0022-1694.

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural arithmetic
logic units. In Advances in Neural Information Processing Systems 31, pp. 8035–8044. Curran
Associates, Inc., 2018.

D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. International Journal of Computer
Vision, 128(7):1867–1888, 2020.

A. J. van der Schaft, M. Dalsmo, and B. M. Maschke. Mathematical structures in the network
representation of energy-conserving physical systems. In Proceedings of 35th IEEE Conference on
Decision and Control, volume 1, pp. 201–206, 1996.

Lelitha Vanajakshi and LR Rilett. Loop detector data diagnostics based on conservation-of-vehicles
principle. Transportation research record, 1870(1):162–169, 2004.

Xinping Xiao and Huiming Duan. A new grey model for traffic flow mechanics. Engineering
Applications of Artificial Intelligence, 88:103350, 2020.

12

Under review as a conference paper at ICLR 2021

LI Yitian and Roy R Gu. Modeling flow and sediment transport in a river system using an artificial
neural network. Environmental management, 31(1):0122–0134, 2003.

Zheng Zhao, Weihai Chen, Xingming Wu, Peter CY Chen, and Jingmeng Liu. Lstm network: a deep
learning approach for short-term traffic forecast. IET Intelligent Transport Systems, 11(2):68–75,
2017.

13

Under review as a conference paper at ICLR 2021

A NOTATION OVERVIEW

Most of the notation used throughout the paper, is summarized in Tab. A.1.

Table A.1: Symbols and notations used in this paper.

Definition Symbol/Notation Dimension

mass input at timestep t xt or xt unspec. or 1
auxiliary input at timestep t at L
cell state at timestep t ct K
limit of sequence of cell states c∞

hidden state at timestep t ht K
redistribution matrix R K ×K
input gate i K
output gate o K
mass m K
input gate weight matrix W i K × L
input gate weight matrix W o K × L
output gate weight matrix U i K ×K
output gate weight matrix Uo K ×K
identity matrix K K ×K
input gate bias bi K
output gate bias bo K
arbitrary differentiable function f
hypernetwork function (conditioner) g
redistribution gate bias BR K ×K
stored mass mc

mass efflux mh

limit of series of mass inputs m∞x
timestep index t
an arbitrary timestep τ
last timestep of a sequence T
redistribution gate weight tensor Wr K ×K × L
redistribution gate weight tensor Ur K ×K ×K
arbitrary feature index a
arbitrary feature index b
arbitrary feature index c

B EXPERIMENTAL DETAILS

In the following, we provide further details on the experimental setups.

B.1 NEURAL ARITHMETIC

Neural networks that learn arithmetic operations have recently come into focus (Trask et al., 2018;
Madsen & Johansen, 2020). Specialized neural modules for arithmetic operations could play a role
for complex AI systems since cognitive studies indicate that there is a part of the brain that enables
animals and humans to perform basic arithmetic operations (Nieder, 2016; Gallistel, 2018). Although
this primitive number processor can only perform approximate arithmetic, it is a fundamental part of
our ability to understand and interpret numbers (Dehaene, 2011).

B.1.1 DETAILS ON DATASETS

We consider the addition problem that was proposed in the original LSTM paper (Hochreiter &
Schmidhuber, 1997). We chose input values in the range [0, 0.5] in order to be able to use the fast
standard implementations of LSTM. For this task, 20 000 samples were generated using a fixed

14

Under review as a conference paper at ICLR 2021

random seed to create a dataset, which was split in 50% training and 50% validation samples. For the
test data, a different random seed was used.

A definition of the static arithmetic task is provided by (Madsen & Johansen, 2020). The following
presents this definition and its extension to the recurrent arithmetic task (c.f. Trask et al., 2018).

The input for the static version is a vector, x ∈ U(1, 2)100, consisting of numbers that are drawn
randomly from a uniform distribution. The target, y, is computed as

y =

(
a+c∑
k=a

xk

)
�

(
b+c∑
k=b

xk

)
,

where c ∈ N, a ≤ b ≤ a+ c ∈ N and � ∈ {+,−, ·}. For the recurrent variant , the input consists of
a sequence of T vectors, denoted by xt, t ∈ {1, . . . , T}, and the labels are computed as

y =

(
T∑
t=1

a+c∑
k=a

xtk

)
�

(
T∑
t=1

b+c∑
k=b

xtk

)
.

For these experiments, no fixed datasets were used. Instead, samples were generated on the fly. Note
that since the subsets overlap, i.e. inputs are re-used, this data does not have mass conservation
properties.

For a more detailed description of the MNIST addition data, we refer to (Trask et al., 2018) and the
appendix of (Madsen & Johansen, 2020).

B.1.2 DETAILS ON HYPERPARAMETERS.

For the addition problem, every network had a single hidden layer with ten units. The output layer
was a linear, fully connected layer for all MC-LSTM and LSTM variants. The NAU (Madsen &
Johansen, 2020) and NALU/NAC (Trask et al., 2018) networks used their corresponding output layer.
Also, we used a more common L2 regularization scheme with low regularization constant (10−4) to
keep the weights ternary for the NAU, rather than the strategy used in the reference implementation
from Madsen & Johansen (2020). Optimization was done using Adam (Kingma & Jimmy, 2015)
for all models. The initial learning rate was selected from {0.1, 0.05, 0.01, 0.005, 0.001} on the
validation data for each method individually. All methods were trained for 100 epochs.

The weight matrices of LSTM were initialized in a standard way, using orthogonal and identity
matrices for the forward and recurrent weights, respectively. Biases were initialized to be zero, except
for the bias in the forget gate, which was initialized to 3. This should benefit the gradient flow for
the first updates. Similarly, MC-LSTM is initialized so that the redistribution matrix is (close to) the
identity matrix. Otherwise we used orthogonal initialization (Saxe et al., 2014). The bias for the
output gate was initialized to -3. This stimulates the output gates to stay closed (keep mass in the
system), which has a similar effect as setting the forget gate bias in LSTM. This practically holds for
all subsequently described experiments.

For the recurrent arithmetic tasks, we tried to stay as close as possible to the setup that was used by
Madsen & Johansen (2020). This means that all networks had again a single hidden layer. The NAU,
Neural Multiplication Unit (NMU) and NALU networks all had two hidden units and, respectively,
NAU, NMU and NALU output layers. The first, recurrent layer for the first two networks was a NAU
and the NALU network used a recurrent NALU layer. For the exact initialization of NAU and NALU,
we refer to (Madsen & Johansen, 2020).

The MC-LSTM models used a fully connected linear layer for projecting the hidden state to the output
prediction for the addition and subtraction tasks. It is important to use a free linear layer in order
to compensate for the fact that the data does not have mass-conserving properties. However, note
that the mass conservation in MC-LSTM is still necessary to solve this task. For the multiplication
problem, we used a multiplicative, non-recurrent variant of MC-LSTM with an extra scalar parameter
to allow the conserved mass to be re-scaled if necessary. This multiplicative layer is described in
more detail in Appendix B.1.3.

Whereas the addition could be solved with two hidden units, MC-LSTM needed three hidden units to
solve both subtraction and multiplication. This extra unit, which we refer to as the trash cell, allows

15

Under review as a conference paper at ICLR 2021

MC-LSTMs to get rid of excessive mass that should not influence the prediction. Note that, since the
mass inputs are vectors, the input gate has to be computed in a similar fashion as the redistribution
matrix. Adam was again used for the optimization. We used the same learning rate as Madsen &
Johansen (2020) (0.001) to train the NAU, NMU and NALU networks. For MC-LSTM the learning
rate was increased to 0.01 for addition and subtraction and 0.05 for multiplication after a manual
search on the validation set. All models were trained for two million update steps.

In a similar fashion, we used the same models from (Madsen & Johansen, 2020) for the MNIST
addition task. For MC-LSTM, we replaced the recurrent NAU layer with a MC-LSTM layer and the
output layer was replaced with a fully connected linear layer. In this scenario, increasing the learning
rate was not necessary. This can probably be explained by the fact that training CNN to regress the
MNIST images is the main challenge during learning. We also used a standard L2-regularization on
the outputs of CNN instead of the implementation proposed in (Madsen & Johansen, 2020) for this
task.

B.1.3 STATIC ARITHMETIC

This experiment should enable a more direct comparison to the results from Madsen & Johansen
(2020) than the recurrent variant. The data for the static task is equivalent to that of the recurrent task
with sequence length one. For more details on the data, we refer to Appendix B.1.1 or (Madsen &
Johansen, 2020).

Since the static task does not require a recurrent model, we discarded the redistribution matrix in
MC-LSTM. The result is a layer with only input and output gates, which we refer to as an Mass-
Conserving Fully Connected (MC-FC) layer. We compared this model to the results reported in
(Madsen & Johansen, 2020), using the code base that accompanied the paper. All NALU and NAU
networks had a single hidden layer. Similar to the recurrent task, MC-LSTM required two hidden
units for addition and three for subtraction. Mathematically, an MC-FC with M hidden neurons and
N inputs can be defined as MC-FC : RN → RM : x 7→ y, where

y = diag(o) · I · x I = softmax(BI) o = σ(bo),

where the softmax operates on the row dimension to get a column-normalized matrix, I .

Using the log-exp transform (c.f. Trask et al., 2018), a multiplicative MC-FC with scaling parameter,
α, can be constructed as follows, exp(MC-FC(log(x)) + α). The scaling parameter is necessary
to break the mass conservation when it is not needed. By replacing the output layer with this
multiplicative MC-FC, it can also be used to solve the multiplication problem. This network also
required three hidden neurons. This model was compared to a NMU network with two hidden
neurons and NALU network.

All models were trained for two million updates with the Adam optimizer (Kingma & Jimmy, 2015).
The learning rate was set to 0.001 for all networks, except for the MC-FC network, which needed a
lower learning rate of 0.0001, and the multiplicative MC-FC variant, which was trained with learning
rate 0.01. These hyperparameters were found using a manual search.

Since the input consists of a vector, the input gate predicts a left-stochastic matrix, similar to
the redistribution matrix. This allows us to verify generalization abilities of the inductive bias in
MC-LSTMs. The performance was measured in a similar way as the recurrent task, except that
generalization was tested over the range of the input values (Madsen & Johansen, 2020). Concretely,
the models were trained on input values in [1, 2] and tested on input values in the range [2, 6].
Table B.2 shows that MC-FC is able to match or outperform both NALU and NAU on this task.

B.2 INBOUND-OUTBOUND TRAFFIC FORECAST

Traffic forecasting considers a large number of different settings and tasks (Tedjopurnomo et al., 2020).
For example whether the physical network topology of streets can be exploited by using graph neural
networks combined with LSTMs (Cui et al., 2019). Within traffic forecasting mass conservation
translates to a conservation-of-vehicles principle. Generally, models that adhere to this principle
are desired (Vanajakshi & Rilett, 2004; Zhao et al., 2017) since they could be useful for long-term
forecasts. Many recent benchmarking datasets for traffic forecasts are usually uni-directional and are
measured at few streets. Thus conservation laws cannot be directly applied (Tedjopurnomo et al.,
2020).

16

Under review as a conference paper at ICLR 2021

Table B.2: Results for the static arithmetic task. MC-FC is a mass-conserving variant of MC-LSTM
based on fully-connected layers for non-recurrent tasks. MC-FCs for addition and subtrac-
tion/multiplication have two and three neurons, respectively. Error bars represent 95% confidence
intervals.

addition subtraction multiplication

success ratea updatesb success ratea updatesb success ratea updatesb

MC-FC 100% +0%
−4% 2.1 · 105 100% +0%

−4% 1.6 · 105 100% +0%
−4% 1.4 · 106

NAU / NMU 100% +0%
−4% 1.8 · 104 100% +0%

−4% 5.0 · 103 98% +1%
−5% 1.4 · 106

NAC 100% +0%
−4% 2.5 · 105 100% +0%

−4% 9.0 · 103 31% +10%
−8% 2.8 · 106

NALU 14% +8%
−5% 1.5 · 106 14% +8%

−5% 1.9 · 106 0% +4%
−0% –

a Percentage of runs that generalized to a different input range.
b Median number of updates necessary to solve the task.

We demonstrate how MC-LSTM can be used in traffic forecasting settings. A typical setting for
vehicle conservation is when traffic counts for inbound and outbound roads of a city are available.
In this case, all vehicles that come from an inbound road must either be within a city or leave the
city on an outbound road. The setting is similar to passenger flows in inbound and outbound metro
(Liu et al., 2019), where LSTMs have also prevailed. We were able to extract such data from a recent
dataset based on GPS-locations (Kreil et al., 2020) of vehicles at a fine geographic grid around cities,
which represents good approximation of a vehicle conserving scenario.

A mass-conserving traffic dataset Based on the data for the traffic4cast 2020 challenge (Kreil
et al., 2020), we constructed a dataset to model inbound and outbound traffic of three different
cities: Berlin, Istanbul and Moscow. The original data consists of 181 sequences of multi-channel
images encoding traffic volume and speed for every five minutes in four (binned) directions. Every
sequence corresponds to a single day in the first half of the year. In order to get the traffic flow
from the multi-channel images at every timestep, we defined a frame around the city and collected
the traffic-volume data for every pixel on the border of this frame. This is illustrated in Fig. 3. For
simplicity, we ignored the fact that a single-pixel frame might have issues with fast-moving vehicles.

By taking into account the direction of the vehicles, the inbound and outbound traffic can be combined
for every pixel on the border of our frame. To get a more tractable dataset, we additionally combined
the pixels of the four edges of the frame to end up with eight values: four values for the incoming
traffic, i.e: one for each border of the frame, and four values for the outgoing traffic. The inbound
traffic would be the mass input for MC-LSTM and the target outputs are the outbound traffic along
the different borders. The auxiliary input is the current daytime, encoded as a value between zero and
one.

To model the sparsity that is often available in other traffic counting problems, we chose three
time-slots (6 am, 12 pm and 6 pm) for which we use fifteen minutes of the actual measurements
— i.e. three timesteps. This could for example simulate the deployment of mobile traffic counting
stations. The other inputs are imputed by the average inbound traffic over the training data, which
consists of 181 days. Outputs are only available when the actual measurements are used. This gives a
total of 9 timesteps per day on which the loss can be computed. For training, this dataset is randomly
split in 85% training and 15% validation samples.

During inference, all 288 timesteps of the inbound and outbound measurements are used to find out
which model learned the traffic dynamics from the sparse training data best. For this purpose, we
used the 18 days of validation data from the original dataset as test set, which are distributed across
the second half of the year. In order to enable a fair comparison between LSTM and MC-LSTM,
the data for LSTM was normalized to zero mean and unit variance for training and inference (using
statistics from the training data). MC-LSTM does not need this pre-processing step and is fed the
raw data.

17

Under review as a conference paper at ICLR 2021

Table B.3: The hyperparameters resulting from the grid search for the traffic forecast experiment.

hidden lr forget bias initial state learnable state

Berlin LSTM 10 0.01 0 – –
MC-LSTM 100 0.01 – 0 True

Istanbul LSTM 100 0.005 5 – –
MC-LSTM 50 0.01 – 0 False

Moscow LSTM 50 0.001 5 – –
MC-LSTM 10 0.01 – 0 False

Table B.4: Results on outbound traffic forecast avg RMSE and MAE with 95% confidence intervals
over 50 runs

Istanbul Berlin Moscow

RMSE MAE RMSE MAE RMSE MAE

MC-LSTM 7.3 ± 0.1 28 ± 2 13.6 ± 1.8 66 ± 1 25.5 ± 1.1 27.8 ± 1.1
LSTM 142.6 ± 4.4 84 ± 3 135.4 ± 5.0 84 ± 3 45.6 ± 0.8 31.7 ± 0.5

Model and Hyperparameters For the traffic prediction, we used LSTM followed by a fully
connected layer as baseline (c.f. Zhao et al., 2017; Liu et al., 2019). For MC-LSTM, we chose to
enforce end-to-end mass conservation by using a MC-FC output layer, which is described in detail
in Appendix B.1.3. For the initialization of the models, we refer to the details of the arithmetic
experiments in Appendix B.1.

For each model and for each city, the best hyperparameters were found by performing a grid search
on the validation data. This means that the hyperparameters were chosen to minimize the error on the
nine 5-minute intervals. For all models, the number of hidden neurons was chosen from {10, 50, 100}
and for the learning rate, the options were {0.100, 0.050, 0.010, 0.005, 0.001}. All models were
trained for 2 000 epochs using the Adam optimizer (Kingma & Jimmy, 2015). Additionally, we
considered values in {0, 5} for the initial value for the forget gate bias in LSTM. For MC-LSTM,
the extra hyperparameters were the initial cell state value (∈ {0, 100}) — i.e. how much cars are in
each memory cell at timestep zero — and whether or not the initial cell state should be trained via
backpropagation. The results of the hyperparameter search can be found in Tab. B.3.

The idea behind tuning the initial cell state, is that unlike with LSTM, the cell state in MC-LSTM
directly reflects the number of cars that can drive out of a city during the first timesteps. If the
initial cell state is too high or too low, this might negatively affect the prediction capabilities of the
model. If it would be possible to estimate the number of cars in a city at the start of the sequence,
this could also be used to get better estimates for the initial cell state. However, from the results
of the hyperparameter search (see Tab. B.3), we might have overestimated the importance of these
hyperparameters.

Results. All models were evaluated on the test data, using the checkpoint after 2 000 epochs for
fifty runs. An example of what the predictions of both models look like for an arbitrary day in an
arbitrarily chosen city is displayed in Fig. B.1. The average Root MSE (RMSE) and Mean Absolute
Error (MAE) are summarized in Tab. B.4. The results show that MC-LSTM is able to generalize
significantly better than LSTM for this task. The RMSE of MC-LSTM is significantly better than
LSTM (p-values 4e−10, 8e−3, and 4e−10 for Istanbul, Berlin, and Moscow, respectively, Wilcoxon
test).

B.3 PENDULUM WITH FRICTION

In the area of physics, we consider the problem of modeling a swinging pendulum with friction. The
conserved quantity of interest is the total energy. During the movement of the pendulum, kinetic

18

Under review as a conference paper at ICLR 2021

Figure B.1: Traffic forecasting models for outbound traffic in Moscow. An arbitrary day has been
chosen for display. Note that both models have only been trained on data at timesteps 71-73, 143-
145, and 215-217. Colors indicate the four borders of the frame, i.e. north, east, south and west.
Left: LSTM predictions shown in dashed lines versus the actual traffic counts (solid lines). Right:
MC-LSTM predictions shown in dashed lines versus the actual traffic counts (solid lines).

energy is converted into potential energy and vice-versa Neglecting friction, total energy is conserved
and the movement would continue indefinitely. Accounting for friction, energy dissipates and the
swinging slows over time until a fixed point is reached. This type of behavior presents a difficulty for
machine learning and is impossible for methods that assume the pendulum to be closed systems, such
as Hamiltonian networks (Greydanus et al., 2019). We postulated that both energy conversion and
dissipation can be fitted by machine learning models, but that an appropriate inductive bias will allow
to generalize from the learned data with more ease.

To train the model, we generated a set of timeseries using the differential equations for a pendulum
with friction. We used multiple different settings for initial angle, length of the pendulum, the amount
of friction, the length of the training-period and with and without Gaussian noise. Each model
received the initial kinetic and potential energy of the pendulum and must predict the consecutive
timesteps. The time series starts always with the pendulum at the maximum displacement — i.e. the
entire energy in the system is potential energy. We generated timeseries of potential- and kinetic
energies by iterating the following settings/conditions: initial amplitude ({0.2, 0.4}), pendulum
length ({0.75, 1}), length of training sequence in terms of timesteps ({100, 200, 400}), noise level
({0, 0.01}), and dampening constant ({0.0, 0.1, 0.2, 0.4, 0.8}). All combinations of those settings
were used to generate a total of 120 datasets, for which we train both models (the auto-regressive
LSTM and MC-LSTM).

We trained an auto-regressive LSTM that receives its current state and a low-dimensional temporal
embedding (using nine sinusoidal curves with different frequencies) to predict the potential and
kinetic energy of the pendulum. Similarly, MC-LSTM is trained in an autoregressive mode, where
a hypernetwork obtains the current state and the same temporal embedding as LSTM. The model-
setup is thus similar to an autoregressive model with exogenous variables from classical timeseries
modelling literature. To obtain suitable hyperparameters we manualy adjusted the learning rate (0.01),
hidden size of LSTM (256), the hypernetwork for estimating the redistribution (a fully connected
network with 3 layers, ReLu activations and hidden sizes of 50, 100, and 2 respectively), optimizer
(Adam, Kingma & Jimmy, 2015) and the training procedure (crucially, the amount of additionally
considered timesteps in the loss after a threshold is reached. See explanation of the used loss below),
on a separately generated validation dataset.

For MC-LSTM, a hidden size of two was used so that each state directly maps to the two energies.
The hypernetwork consists of three fully connected layers of size 50, 100 and 4, respectively. To
account for the critical values at the extreme-points of the pendulum (i.e. the amplitudes — where

19

Under review as a conference paper at ICLR 2021

the energy is present only in the form of potential energy — and the midpoint — where only kinetic
energy exists), we slightly offset the cell state from the actual predicted value by using a linear
regression with a slope of 1.02 and an intercept −0.01.

For both models, we used a combination of Pearson’s correlation of the energy signals and the MSE as
a loss function (by subtracting the former mean from the latter). Further, we used a simple curriculum
to deal with the long autoregressive nature of the timeseries (Bengio et al., 2015): Starting at a time
window of eleven we added five additional timesteps whenever the combined loss was below −0.9.

Overall, MC-LSTM has significantly outperformed LSTM with a mean MSE of 0.01 (standard
deviation 0.04) compared to 0.05 (standard deviation 0.15; with a p-value 6.9e− 08, Wilcoxon test).

B.4 HYDROLOGY

Modeling river discharge from meteorological data (e.g., precipitation, temperature) is one of the most
important tasks in hydrology, and is necessary for water resource management and risk mitigation
related to flooding. Recently, Kratzert et al. (2019c; 2020) established LSTM-based models as
state-of-the-art in rainfall runoff modeling, outperforming traditional hydrological models by a large
margin against most metrics (including peak flows, which is critical for flood prediction). However,
the hydrology community is still reluctant to adopt these methods (e.g. Beven, 2020). A recent
workshop on ‘Big Data and the Earth Sciences’ Sellars (2018) reported that “[m]any participants
who have worked in modeling physical-based systems continue to raise caution about the lack of
physical understanding of ML methods that rely on data-driven approaches.”

One of of the most basic principles in watershed modeling is mass conservation. Whether water is
treated as a resource (e.g. droughts) or hazard (e.g. floods), a modeller must be sure that they are
accounting for all of the water in a catchment. Thus, most models conserve mass (Todini, 1988),
and attempt to explicitly implement the most important physical processes. The downside of this
‘model everything’ strategy is that errors are introduced for every real-world process that is not
implemented in a model, or implemented incorrectly. In contrast, MC-LSTM is able to learn any
necessary behavior that can be induced from the signal (like LSTM) while still conserving the overall
water budget.

B.4.1 DETAILS ON THE DATASET

The data used in all hydrology related experiments is the publicly available Catchment Attributes and
Meteorology for Large-sample Studies (CAMELS) dataset (Newman et al., 2014; Addor et al., 2017b).
CAMELS contains data for 671 basins and is curated by the US National Center for Atmospheric
Research (NCAR). It contains only basins with relatively low anthropogenic influence (e.g., dams
and reservoirs) and basin sizes range from 4 to 25 000 km2. The basins cover a range of different
geo- and eco-climatologies, as described by Newman et al. (2015) and Addor et al. (2017a). Out of
all 671 basins, we used 447 — these are the basins for which simulations from all benchmark models
are available (see Sec. B.4.4). To reiterate, we used benchmark hydrology models that were trained
and tested by other groups with experience using these models, and were therefore limited to the 447
basis with results for all benchmark models. The spatial distribution of the 447 basins across the
contiguous USA (CONUS) is shown in Fig. B.2.

For each catchment, roughly 30 years of daily meteorological data from three different products exist
(DayMet, Maurer, NLDAS). Each meteorological dataset consist of five different variables: daily
cumulative precipitation, daily minimum and maximum temperature, average short-wave radiation
and vapor pressure. We used the Maurer forcing data because this is the data product that was
used by all benchmark models (see Sec. B.4.4). In addition to meteorological data, CAMELS also
includes a set of static catchment attributes derived from remote sensing or CONUS-wide available
data products. The static catchment attributes can broadly be grouped into climatic, vegetation or
hydrological indices, as well as soil and topological properties. In this study, we used the same
27 catchment attributes as Kratzert et al. (2019c). Target data were daily averaged streamflow
observations originally from the USGS streamflow gauge network, which are also included in the
CAMELS dataset.

Training, validation and test set. Following the calibration and test procedure of the benchmark
hydrology models, we trained on streamflow observations from 1 October 1999 through 30 September

20

Under review as a conference paper at ICLR 2021

0.0 0.2 0.4 0.6 0.8 1.0
NSE

Figure B.2: Spatial distribution of the 447 catchments considered in this study. The color denotes
the Nash-Sutcliffe Efficiency of the MC-LSTM ensemble for each basin, where a value of 1 means
perfect predictions.

2008 and tested on observations from 1 October 1989 to 30 September 1999. The remaining period
(1 October 1980 to 30 September 1989) was used as validation period for hyperparameter tuning.

B.4.2 DETAILS ON THE TRAINING SETUP AND MC-LSTM HYPERPARAMETERS

The general model setup follows insights from previous studies (Kratzert et al., 2018; 2019c;b;
2020), where LSTMs were used for the same task. We use sequences of 365 timesteps (days) of
meteorological inputs to predict discharge at the last timestep of the sequence (sequence-to-one
prediction). The mass input x in this experiment was catchment averaged precipitation (mm/day) and
the auxiliary inputs a were the 4 remaining meteorological variables (min. and max. temperature,
short-wave radiation and vapor pressure) as well as the 27 static catchment attributes, which are
constant over time.

We tested a variety of MC-LSTM model configurations and adaptions for this specific task, which
are briefly described below:

1. Processing auxiliary inputs with LSTM: Instead of directly using the auxiliary inputs in
the input gate (Eq. 5), output gate (Eq. 6) and time-dependent mass redistribution (Eq. 8),
we first processed the auxiliary inputs a with LSTM and then used the output of this LSTM
as the auxiliary inputs. The idea was to add additional memory for the auxiliary inputs,
since in its base form only mass can be stored in the cell states of MC-LSTM. This could be
seen as a specific adaption for the rainfall runoff modeling application, since information
about the weather today and in the past ought to be useful for controlling the gates and mass
redistribution. Empirically however, we could not see any significant performance gain and
therefore decided to not use the more complex version with an additional LSTM.

2. Auxiliary output + regularization to account for evapotranspiration: Of all precipita-
tion falling in a catchment, only a part ends as discharge in the river. Large portions of
precipitation are lost to the atmosphere in form of evaporation (from e.g. open water sur-
faces) and transpiration (from e.g. plants and trees), and to groundwater. One approach
to account for this “mass loss” is the following: instead of summing over outgoing mass
(Eq. 4), we used a linear layer to connect the outgoing mass to two output neurons. One
neuron was fitted against the observed discharge data, while the second was used to estimate
water loss due to unobserved sinks. A regularization term was added to the loss function to
account for this. This regularization term was computed as the difference between the sum

21

Under review as a conference paper at ICLR 2021

of the outgoing mass from MC-LSTM and the sum over the two output neurons. This did
work, and the timeseries of the second auxiliary output neuron gave interesting results (i.e.
matching the expected behavior of the annual evapotranspiration cycle), however results
were not significantly better compared to our final model setup, which is why we rejected
this architectural change.

3. Explicit trash cell Another way to account for evapotranspiration that we tested is to allow
the model to use one memory cell as explicit “trash cell”. That is, instead of deriving the
final model prediction as the sum over the entire outgoing mass vector, we only calculate the
sum over all but e.g. one element (see Eq. 13). This simple modification allows the model
to use e.g. the first memory cell to discard mass from the system, which is then ignored
for the model prediction. We found that this modification improved performance, and thus
integrated it into our final model setup.

4. Input/output scaling to account for input/output uncertainty: Both, input and output
data in our applications inherit large uncertainties (Nearing et al., 2016), which is not ideal
for mass-conserving models (and likely one of the reasons why LSTM performs so well
compared to all other mass-conserving models). To account for that, we tried three different
adaptions. First, we used a small fully connected network to derive time-dependent scaling
weights for the mass input, which we regularized to be close to one. Second, we used a
linear layer with positive weights to map the outgoing mass to the final model prediction,
where all weights were initialized to one and the bias to zero. Third, we combined both. Out
of the three, the input scaling resulted in the best performing model, however the results
were worse than not scaling.

5. Time-dependent redistribution matrix variants: For this experiment, a time-dependent
redistribution matrix is necessary, since the underlying real-world processes (such as snow
melt and thus conversion from snow into e.g. soil moisture or surface runoff) are time-
dependent. Since using the redistribution matrix as proposed in Eq. 8 is memory-demanding,
especially for models with larger numbers of memory cells, we also tried to use a different
method for this experiment. Here, we learned a fixed matrix (as in Eq. 7) and only calculated
two vectors for each timestep. The final redistribution matrix was then derived as the outer
product of the two time-dependent vectors and the static matrix. This resulted in lower
memory consumption, however the model performance deteriorated significantly, which
could be a hint towards the complexity required to learn the redistributing processes in this
problem.

As an extension to the standard MC-LSTM model introduced in Eq. (5) to Eq. (8), we also used the
mass input (precipitation) in all gates. The reason is the following: Different amounts of precipitations
can lead to different processes. For example, low amounts of precipitation could be absorbed by the
soil and stored as soil moisture, leading to effectively no immediate discharge contribution. Large
amounts of precipitation on the other hand, could lead to direct surface runoff, if the water cannot
infiltrate the soil at the rate of the precipitation falling down. Therefore, it is crucial that the gates
have access to the information contained in the precipitation input. The final model design used in all
hydrology experiments is described by the following equations:

mt
tot = R

t · ct−1 + it · xt (10)

ct = (1− ot)�mt
tot (11)

ht = ot �mt
tot (12)

ŷ =

n∑
i=2

hti, (13)

with the gates being defined by

22

Under review as a conference paper at ICLR 2021

it = σ̃(W i · at +U i ·
ct−1

‖ct−1‖1
+ V i · xt + bi) (14)

ot = σ(W o · at +Uo ·
ct−1

‖ct−1‖1
+ V o · xt + bo) (15)

Rt = softmax

(
Wr · at + Ur ·

ct−1

‖ct−1‖1
+ Vr · xt +Br

)
. (16)

The activation function of the input gate in this experiment is the normalized logistic function defined
by

σ̃(ik) =
σ(ik)∑
k σ(ik)

(17)

We manually tried different sets of hyperparameters, because a large-scale automatic hyper parameter
search was not feasible. Besides trying out all variants as described above, the main hyper parameter
that we tuned for the final model was the number of memory cells. For other parameters, such as
learning rate, mini-batch size, number of training epochs, we relied on previous work using LSTMs
on the same dataset.

The final hyper parameters are a hidden size of 64 memory cells and a mini-batch size of 256. We
used the Adam optimizer (Kingma & Jimmy, 2015) with a scheduled learning rate starting at 0.01
then lowering the learning rate after 20 epochs to 0.005 and after another 5 epochs to 0.001. We
trained the model for a total number of 30 epochs and used the weights of the last epoch for the final
model evaluation. All weight matrices were initialized as (semi) orthogonal matrices (Saxe et al.,
2014) and all bias terms with a constant value of zero. The only exception was the bias of the output
gate, which we initialized to −3, to keep the output gate closed at the beginning of the training.

B.4.3 DETAILS ON THE LSTM MODEL

For LSTM, we largely relied on expertise from previous studies (Kratzert et al., 2018; 2019c;b;
2020). The only hyper parameter we adapted was the number of memory cells, since we used
fewer basins (447) than in the previous studies (531). We found that LSTM with 128 memory cells,
compared to the 256 used in previous studies, resulted in slightly better results. Apart from that, we
trained LSTMs with the same inputs and settings (sequence-to-one with a sequence length of 365)
as described in the previous section for MC-LSTM. We used the standard LSTM implementation
from the PyTorch package (Paszke et al., 2019) and only manually adapted the bias of the forget gate,
which we initialized to 3, to keep the forget gate open at the beginning of the training.

23

Under review as a conference paper at ICLR 2021

Table B.5: Model robustness of MC-LSTM and LSTM results over the n = 10 different random
seeds. For all n = 10 models, we calculated the median performance for each metric and report the
mean and standard deviation of the median values in this table.

MCa NSEb β-NSEc FLVd FHVe

MC-LSTM Single 3 0.726±0.003 -0.021±0.003 -38.7±3.2 -13.9±0.7
LSTM Single 7 0.737±0.003 -0.035±0.005 13.6±3.4 -14.8±1.0
a: Mass conservation (MC).
b: Nash-Sutcliffe efficiency: (−∞, 1], values closer to one are desirable.
c: β-NSE decomposition: (−∞,∞), values closer to zero are desirable.
d: Bottom 30% low flow bias: (−∞,∞), values closer to zero are desirable.
e: Top 2% peak flow bias: (−∞,∞), values closer to zero are desirable.

B.4.4 DETAILS ON THE BENCHMARK MODELS

The benchmark models were first collected by Kratzert et al. (2019c). All models were configured,
trained and run by several different research groups, most often the respective model developers
themselves. This was done to avoid any potential to favor our own models. All models used the same
forcing data (Maurer) and the same time periods to train and test. The models can be classified in two
groups:

1. Models trained for individual watersheds. These are SAC-SMA (Newman et al., 2017),
VIC (Newman et al., 2017), three different model structures of FUSE1, mHM (Mizukami
et al., 2019) and HBV (Seibert et al., 2018). For the HBV model, two different simulations
exist: First, the ensemble average of 1000 untrained HBV models (lower benchmark) and
second, the ensemble average of 100 trained HBV models (upper benchmarks). For details
see (Seibert et al., 2018).

2. Models trained regionally. For hydrological models, regional training means that one
parameter transfer model was trained, which estimates watershed-specific model parameters
through globally trained model functions from e.g. soil maps or other catchment attributes.
For this setting, the benchmark dataset includes simulations of the VIC model (Mizukami
et al., 2017) and mHM (Rakovec et al., 2019).

B.4.5 DETAILED RESULTS.

Table B.5 provides results for MC-LSTM and LSTM averaged over the n = 10 model repetitions.

Table B.6 provides the complete benchmarking results.

1Provided by Nans Addor on personal communication

24

Under review as a conference paper at ICLR 2021

Table B.6: Full hydrology benchmark results. All values represent the median (25% and 75%
percentile in sub- and superscript, respectively) over the 447 basins. For both MC-LSTM and LSTM,
metrics were derived from the ensemble mean prediction over the 10 model repetitions (same as
reported in the main paper).

MCa NSEb β-NSEc FLVd FHVe

MC-LSTM Ensemble 3 0.7440.814
0.641 -0.0200.013

−0.066 -24.731.1
−94.4 -14.7−7.0−23.4

LSTM Enssemble 7 0.7630.835
0.676 -0.034−0.002−0.077 36.359.7−0.4 -15.7−8.6−23.8

SAC-SMA 3 0.6030.682
0.512 -0.066−0.026−0.108 37.468.1

−31.9 -20.4−12.2−29.9
VIC (basin) 3 0.5510.641

0.465 -0.0180.032
−0.071 -74.823.1−271.8 -28.1−17.5−40.1

VIC (regional) 3 0.3070.402
0.218 -0.0740.023

−0.166 18.969.6
−73.1 -56.5−38.3−64.6

mHM (basin) 3 0.6660.730
0.588 -0.0400.003

−0.102 11.465.1
−64.0 -18.6−9.5−27.7

mHM (regional) 3 0.5270.619
0.391 -0.0390.033

−0.169 36.870.9
−32.6 -40.2−23.8−51.0

HBV (lower) 3 0.4170.550
0.276 -0.0230.058

−0.114 23.961.0
−25.9 -41.9−17.3−55.2

HBV (upper) 3 0.6760.749
0.578 -0.0120.034

−0.058 18.367.5
−62.9 -18.5−8.5−27.8

FUSE (900) 3 0.6390.715
0.539 -0.0310.024

−0.100 -10.549.2−94.8 -18.9−9.9−27.8
FUSE (902) 3 0.6500.727

0.570 -0.047−0.004−0.098 -68.217.1−239.9 -19.4−8.9−27.9
FUSE (904) 3 0.6220.705

0.527 -0.067−0.019−0.135 -67.635.7−238.6 -21.4−11.3−33.0
a: Mass conservation (MC).
b: Nash-Sutcliffe efficiency: (−∞, 1], values closer to one are desirable.
c: β-NSE decomposition: (−∞,∞), values closer to zero are desirable.
d: Bottom 30% low flow bias: (−∞,∞), values closer to zero are desirable.
e: Top 2% peak flow bias: (−∞,∞), values closer to zero are desirable.

25

Under review as a conference paper at ICLR 2021

C THEOREMS & PROOFS

Theorem 1 (Conservation property). Let mτ
c =

∑
k c

τ
k and mτ

h =
∑
k h

τ
k be, respectively, the mass

in the MC-LSTM storage and the outputs at time τ . At any timestep τ , we have:

mτ
c = m0

c +

τ∑
t=1

xt −
τ∑
t=1

mt
h.

That is, the change of mass in the cell states is the difference between input and output mass,
accumulated over time.

Proof. The proof is by induction and we usemtot = R
t · ct−1 + it · xt from Eq.(2).

For τ = 0, we have m0
c = m0

c +
∑0
t=1 x

t −
∑0
t=1m

t
h, which is trivially true when using the

convention that
∑0
t=1 = 0.

Assuming that the statement holds for τ = T , we show that it must also hold for τ = T + 1.

Starting from Eq. (3), the mass of the cell states at time T + 1 is given by:

mT+1
c =

K∑
k=1

(1− ok)mT+1
tot,k =

K∑
k=1

mT+1
tot,k −

K∑
k=1

okm
T+1
tot,k,

where mt
tot,k is the k-th entry of the result from Eq. (2) (at timestep t). The sum over entries in the

first term can be simplified as follows:

K∑
k=1

mT+1
tot,k =

K∑
k=1

 K∑
j=1

rkjc
T
j + ikx

T+1


=

K∑
j=1

cTj

(
K∑
k=1

rkj

)
+ xT+1

K∑
k=1

ik

= mT
c + xT+1.

The final simplification is possible becauseR and i are (left-)stochastic. The mass of the outputs can
then be computed from Eq. (4):

mT+1
h =

K∑
k=1

okm
T+1
tot,k.

Putting everything together, we find

mT+1
c =

K∑
k=1

mT+1
tot,k −

K∑
k=1

okm
T+1
tot,k

= mT
c + xT+1 −mT+1

h

= m0
c +

T∑
t=1

xt −
T∑
t=1

mt
h + xT+1 −mT+1

h

= m0
c +

T+1∑
t=1

xt −
T+1∑
t=1

mt
h

By the principle of induction, we conclude that mass is conserved, as specified in Eq. (9).

Corollary 1. In each timestep τ , the cell states cτk are bounded by the sum of mass inputs∑τ
t=1 x

τ +m0
c , that is |cτk| ≤

∑τ
t=1 x

τ +m0
c . Furthermore, if the series of mass inputs converges

limτ→∞
∑τ
t=1 x

τ = m∞x , then also the sum of cell states converges.

26

Under review as a conference paper at ICLR 2021

Proof. Since ctk ≥ 0, xt ≥ 0 and mt
h ≥ 0 for all k and t,

|cτk| = cτk ≤
K∑
k=1

cτk = mτ
c ≤

τ∑
t=1

xτ +m0
c , (18)

where we used Theorem 1. Convergence follows immediately through the comparison test.

27

	Introduction
	Mass-Conserving LSTM
	Properties
	Special cases and related work
	Experiments
	Arithmetic tasks
	Inbound-outbound traffic forecasting
	Pendulum with friction
	Hydrology: rainfall runoff modeling

	Notation overview
	Experimental Details
	Neural arithmetic
	Details on Datasets
	Details on Hyperparameters.
	Static arithmetic

	Inbound-outbound traffic forecast
	Pendulum with friction
	Hydrology
	Details on the Dataset
	Details on the training setup and MC-LSTM hyperparameters
	Details on the LSTM model
	Details on the benchmark models
	Detailed results.

	Theorems & proofs

