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ABSTRACT

Few datasets contain self-identified demographic information, inferring demo-
graphic information risks introducing additional biases, and collecting and stor-
ing data on sensitive attributes can carry legal risks. Besides, categorical de-
mographic labels do not necessarily capture all the relevant dimensions of hu-
man diversity. We propose to implicitly learn a set of continuous face-varying
dimensions, without ever asking an annotator to explicitly categorize a per-
son. We uncover the dimensions by learning on A View From Somewhere
(AVFS) dataset of 638,180 human judgments of face similarity. We demon-
strate the utility of our learned embedding space for predicting face similarity
judgments, collecting continuous face attribute values, attribute classification,
and comparative dataset diversity auditing. Moreover, using a novel conditional
framework, we show that an annotator’s demographics influences the importance
they place on different attributes when judging similarity, underscoring the need
for diverse annotator groups to avoid biases. Data and code are available at
https://github.com/SonyAI/a_view_from_somewhere.

1 INTRODUCTION

The canonical approach to evaluating human-centric image dataset diversity is based on demographic
attributes labels. Many equate diversity with parity across the subgroup distributions (Kay et al.,
2015; Schwemmer et al., 2020), presupposing access to demographically labeled samples. However,
most datasets are web scraped, lacking ground-truth information about image subjects (Andrews
et al., 2023). Moreover, data protection legislation considers demographic attributes to be personal
information and limits their collection and use (Andrus et al., 2021; 2020).

Even when demographic labels are known, evaluating diversity based on subgroup counts fails to
reflect the continuous nature of human phenotypic diversity (e.g., skin tone is often reduced to light
vs. dark). Further, even within the same subpopulation, image subjects exhibit certain traits to a
greater or lesser extent than others (Becerra-Riera et al., 2019; Carcagnì et al., 2015; Feliciano, 2016).

When labels are unknown, researchers typically choose certain attributes they consider to be relevant
for human diversity and use human annotators to infer them (Karkkainen & Joo, 2021; Wang et al.,
2019). Inferring labels, however, is difficult, especially for nebulous social constructs, e.g., race
and gender (Hanna et al., 2020; Keyes, 2018) and can introduce additional biases (Freeman et al.,
2011). The label taxonomies not only encode, reify, and propagate stereotypes beyond “their cultural
context” (Khan & Fu, 2021), but also do not permit multi-group membership, resulting in the erasure
of, e.g., multi-ethnic individuals (Robinson et al., 2020; Karkkainen & Joo, 2021). Significantly,
discrepancies between inferred and self-identified attributes can induce psychological distress by
invalidating an individual’s self-image (Campbell & Troyer, 2007; Roth, 2016).

In this work, we avoid problematic semantic labels altogether and propose to learn a perceptual
similarity function (i.e., model) aligned with human perception, measuring the similarity between
two faces. As similarity is inversely connected to diversity (Leinster & Cobbold, 2012), our model
naturally provides dataset users with a perceptual diversity measure. Our model, formulated under a
novel conditional framework, not only learns to accurately predict human judgments of face similarity,
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but also provides a human-interpretable decomposition of the dimensions used in the human-decision
making process, as well as the importance distinct annotators place on each dimension. Underlying
our model is A View From Somewhere (AVFS) dataset of 638,180 face similarity judgments over
4,921 faces. Each judgment corresponds to the odd-one-out (i.e., least similar) face in a triplet of
faces and is accompanied by both the identifier and demographic attributes of the annotator who
made the judgment. AVFS is made available under a Creative Commons license (CC-BY-NC-SA).

We demonstrate that (1) individual embedding dimensions learned by training on AVFS are related
to concepts of gender, ethnicity, age, as well as face and hair morphology; (2) compared to face
embeddings induced by learning on face identity and semantic face attribute datasets, our embeddings
are highly correlated with the human mental representational space of faces; (3) annotators are
influenced by their sociocultural backgrounds, underscoring the need for diverse annotator groups
to mitigate bias; and (4) our model not only provides an effective similarity measure, but can also
be used to collect continuous (as opposed to discrete) face attribute values for novel faces from
annotators, binary attribute classification, and comparative dataset attribute disparity estimation.

2 RELATED WORK

Face datasets. Most human face datasets are composed of semantically labeled images, created for
the purposes of identity and attribute recognition (Karkkainen & Joo, 2021; Liu et al., 2015; Huang
et al., 2008; Cao et al., 2018). When learning embeddings on such data, the implicit assumption is
that semantic similarity is equivalent to visual similarity (Deselaers & Ferrari, 2011). However, many
semantic categories (including human social categories) are functional (Rosch, 1975; Rothbart &
Taylor, 1992), i.e., unconstrained by visual features such as shape, color, and material. Moreover,
semantic labels only indicate the presence or absence of an attribute, as opposed to its magnitude,
making it impossible to compare the similarity between same-labeled samples (Vemulapalli &
Agarwala, 2019). Therefore, such data may not represent the best resource for learning a similarity
function aligned with human visual perception. Unlike AVFS, existing face similarity datasets (Somai
& Hancock, 2021; Sadovnik et al., 2018; McCauley et al., 2021; Vemulapalli & Agarwala, 2019)
utilize synthetic imagery, have a limited number of judgments, are not publicly available, and/or
wholly focus on lookalike or facial expression similarity.

Psychological embeddings. The human mind is conjectured by cognitive psychologists to have “a
considerable investment in similarity” (Medin et al., 1993). When two entities are compared they
mutually constrain the set of features that are activated or inferred in the human mind (Markman,
1996)—i.e., similarity is dynamic, where features are discovered and aligned based on what is being
compared. Multidimensional scaling (MDS) is often used to learn psychological embeddings from
human judgments of similarity (Zheng et al., 2019; Roads & Love, 2021; Dima et al., 2022; Josephs
et al., 2021). As MDS approaches cannot embed images outside of the training set, researchers
have used pretrained models as feature extractors (Sanders & Nosofsky, 2020; Peterson et al., 2018;
Attarian et al., 2020), which can introduce implicit biases (Krishnakumar et al., 2021; Steed &
Caliskan, 2021). In contrast, our method generalizes to novel face images and is trained end-to-end.

Annotator positionality. Attribute labeling by humans not only depends on the image subject being
categorized, but also on the annotator’s sociocultural background as well as extrinsic contextual
cues (Segall et al., 1966; Balaresque & King, 2016; Hill, 2002; Roth, 2016; Freeman et al., 2011).
Despite this, annotator positionality has only recently entered into discourse in computer vision (Chen
& Joo, 2021; Zhao et al., 2021; Denton et al., 2021). Notably, “only five publications [from 113
surveyed] provided any [annotator] demographic information” (Scheuerman et al., 2021). In order to
mitigate bias, one must first measure bias (Le Quy et al., 2022). To our knowledge, AVFS represents
the first human-centric dataset, where each annotation is accompanied by both the identifier and
demographic attributes of the annotator who generated it. In this work, we introduce a conditional
framework that utilizes annotator identifiers, which increases predictive performance and reveals the
importance distinct annotators place on different attributes when judging similarity.

3 A VIEW FROM SOMEWHERE DATASET

To learn a similarity function aligned with human perception, we collect, AVFS, a large-scale dataset
of odd-one-out similarity judgments. An odd-one-out judgment corresponds to the least similar face
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in a triplet of face images, representing a three alternative forced choice (3AFC) task. Refer to the
Appendix for further details on AVFS.

Face image stimuli. For our proof of concept, 4,921 faces were sampled from the CC-BY licensed
FFHQ (Karras et al., 2019) dataset. The subset was obtained by first splitting FFHQ into 56 partitions
based on inferred intersectional group labels, and then randomly sampling from each partition with
equal probability. Ethnicity was estimated using a FairFace model (Karkkainen & Joo, 2021); and
binary gender expression and age group were obtained from FFHQ-Aging crowdsourced human
annotations (Or-El et al., 2020). See the Appendix for more details. All faces are near-frontal with
little to no eye occlusions and an apparent age > 19 years old.

3AFC similarity judgments. AVFS contains 638,180 quality-controlled triplets over 4,921 faces,
representing 0.003% of all possible triplets. Annotators were presented with a triplet and instructed to:
choose the person that looks least similar to the two other people (odd-one-out). To focus our proof
of concept on intrinsic facial features, annotators were additionally instructed to ignore differences in
pose, expression, lighting, accessories, background, and objects. Each AVFS triplet is labeled with a
judgment, as well as the identifier of the annotator who made the judgment and their self-reported age,
nationality, ancestry, and gender identity. As in previous non-facial odd-one-out datasets (Josephs
et al., 2021; Hebart et al., 2022; Dima et al., 2022), there is a single judgment per triplet. Quality
was controlled by excluding judgments from annotators who provided overly fast, deterministic, or
incomplete responses. In total, 1,645 annotators contributed to AVFS via Amazon Mechanical Turk
(AMT) and provided consent to use their study data. Compensation was 15 USD per hour.

3AFC task rationale. Let x ∈ X and sim : (xi,xj) → sim(i, j) ∈ R denote a face image and
a similarity function, resp. Our motivation for collecting AVFS is fourfold. Most significantly,
the odd-one-out task does not require an annotator to explicitly categorize people. Second, for a
triplet (xi,xj ,xk), repeatedly varying xk permits the identification of the relevant dimensions that
contribute to sim(i, j). That is, wlog, xk provides context for which sim(i, j) is determined, making
the task easier than explicit pairwise similarity tasks (i.e., “Is xi similar to xj?”). This is because it
is not always apparent to an annotator which dimensions are relevant when determining sim(i, j),
especially when xi and xj are perceptually different. As highlighted in several cognitive psychology
works (Medin et al., 1993; Markman & Gentner, 2005; Goodman, 1972), context makes salient:
context-related properties; and, the extent to which objects being compared share context-related
properties. Third, there is no need to prespecify attribute lists hypothesized as relevant for comparison
(e.g., “Is xi older than xj?”). The odd-one-task implicitly encodes salient attributes that are used
to determine similarity. Finally, compared to judgments for triplets composed of an anchor (i.e.,
reference point), xa, a positive, xp, and a negative, xn, odd-one-out judgments naturally provide
more information. Odd-one-out triplets require an annotator to determine sim(i, j), sim(i, k), and
sim(j, k), whereas triplets with anchors only necessitate the evaluation of sim(a, p) and sim(a, n).

4 CONDITIONAL PERCEPTUAL SIMILARITY FUNCTION

Zheng et al. (2019) developed an MDS approach for learning psychological embeddings from odd-
one-out judgments, which have been shown to offer a window into the dimensions in the human
mind of object categories (Hebart et al., 2020), human actions (Dima et al., 2022), and reachspace
environments (Josephs et al., 2021). The approach is based on three assumptions. First, embeddings
can be learned solely from odd-one-judgments, where representations are constrained to be continuous,
non-negative, and sparse. Such properties support interpretability such that dimensions indicate both
feature presence and feature magnitude. Second, odd-one-out judgments are a function of sim(i, j),
sim(i, k), and sim(j, k). Third, odd-one-out judgments are stochastic, where the probability of
selecting xk as the odd-one-out is p(k) ∝ exp(sim(i, j)).

Model of conditional decision-making. At a high-level, we want to apply Zheng et al. (2019)’s
MDS approach to learn face embeddings. However, MDS cannot embed data outside of the training
set, limiting its utility. Moreover, MDS pools all judgments, disregarding intra- and inter-annotator
stochasticity. Therefore, we propose to learn a conditional convolutional neural network (CNN).

Let {({xiℓ,xjℓ,xkℓ}, kℓ, a)}nℓ=1 denote a training set of n (triplet, judgment, annotator) tuples,
where a ∈ A. To simplify notation, we assume that judgments always correspond to index kℓ.
Suppose f : x 7→ f(x) = w ∈ Rd is a CNN, parametrized by Θ, where w ∈ Rd is an embedding
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of x. In contrast to Zheng et al. (2019), we model the probability of annotator a selecting kℓ as
p(kℓ | a) ∝ exp(sima(iℓ, jℓ)), where sima(·, ·) denotes the internal similarity function of a. Given
two images xi and xj , we define their similarity according to a as:

sima(i, j) = (σ(ϕa)⊙ ReLU(wi))
⊤ · (σ(ϕa)⊙ ReLU(wj)), (1)

where σ(·) is the sigmoid function and σ(ϕa) ∈ [0, 1]d is a mask associated with a. Each mask
plays the role of an element-wise gating function, encoding the importance a places on each of the d
embedding dimensions when determining similarity. Conditioning prediction on annotator identifiers
induces subspaces that encode each annotator’s notion of similarity, permitting us to study whether
per-dimensional importance scores differ between annotators. Veit et al. (2017) employ a similar
procedure to learn subspaces which encode different notions of similarity (e.g., font style, character
type).

Conditional loss function. We denote by Φ = [ϕ⊤
1 , . . . ,ϕ

⊤
|A|] ∈ Rd×|A| a trainable weight matrix,

where each column vector ϕ⊤
a corresponds to annotator a’s mask prior to applying σ(·). In our

conditional framework, we jointly optimize Θ and Φ by minimizing:

−
∑
ℓ

log [p̂(kℓ | a)] + α1

∑
i

∥ReLU(wi)∥1 + α2

∑
ij

ReLU(−wi)j + α3

∑
a

∥ϕa∥22, (2)

where

p̂(kℓ | a) = exp(sima(iℓ, jℓ))

exp(sima(iℓ, jℓ)) + exp(sima(iℓ, kℓ)) + exp(sima(jℓ, kℓ))
(3)

is the predicted probability that kℓ is the odd-one-out conditioned on a. The first term in Eq. 2
encourages similar face pairs to result in large dot products. The second term (modulated by α1 ∈ R)
promotes sparsity. The third term (modulated by α2 ∈ R) supports interpretability by penalizing
negative values. The last term (modulated by α3 ∈ R) penalizes large weights.

Our conditional decision-making framework is generally applicable to any task that involves mapping
from inputs to decisions made by humans; it only requires record-keeping during data collection such
that each judgment (or annotation) is associated with the annotator who generated it.

5 EXPERIMENTS

We demonstrate the utility of our AVFS induced embedding spaces for predicting face similarity
judgments, revealing annotator bias, collecting continuous face attribute values, attribute classification,
and comparative dataset diversity auditing.

5.1 EXPERIMENTAL SETUP

AVFS model training and implementation details. When α3 = 0 and σ(ϕa) = [1, . . . , 1] (∀a),
Eq. 2 corresponds to the unconditional MDS objective proposed by Zheng et al. (2019). We refer
to unconditional and conditional models trained on AVFS as AVFS-U and AVFS-C, resp., and
conditional models whose masks are learned post hoc as AVFS-CPH. A AVFS-CPH model uses a
fixed unconditional model (i.e., AVFS-U) to obtain face embeddings such that only Φ is trainable.

AVFS models have ResNet18 (R18) (He et al., 2016) architectures and output 128-dimensional
embeddings. We use the Adam (Kingma & Ba, 2014) optimizer with default parameters, reserving
10% of AVFS for validation. Based on grid search, we empirically set α1 = 5 × 10−5 and α2 =
1× 10−2. For AVFS-CPH and AVFS-CPH, we additionally set α3 = 1× 10−5. Across independent
runs, we find that only a fraction of the 128 dimensions are needed and individual dimensions are
reproducible. Post-optimization, we remove dimensions with maximal values close to zero. For
AVFS-U, this results in 22 dimensions (61.9% validation accuracy). Note that we observe that 8/22
dimensions have a Pearson’s r correlation > 0.9 with another dimension. Refer to the Appendix for
further details on the models used in this paper.

Comparative embedding methods. Where appropriate, for comparison, we consider embeddings
extracted from face identity verification, face attribute recognition, self-supervised, and object
recognition models: (1–4) CASIA-WebFace (Yi et al., 2014) are face verification models trained with
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Table 1: Predicting human similarity judgments. (Same Stimuli) Accuracy over 24,060 judgments
and Spearman’s r between the entropy in human- and model-generated triplet odd-one-out probabil-
ities. (Novel Stimuli) Accuracy over 80,300 judgments and Spearman’s r between the entropy in
human- and model-generated similarity matrices. #Labels is an approximate of the number of labels
collected to create a dataset accounting for consensus.

Same Stimuli Novel Stimuli

Model Method #Images #Labels Arch. Acc. r Acc. r

ImageNet1K Cross-entropy 1.3M >1.3M RG-32Gf 46.6 0.09 41.7 0.32
FairFace Cross-entropy 62K 372K R18 55.9 0.41 51.9 0.67
FairFace-L Cross-entropy 62K 372K R18 52.9 0.25 48.6 0.54
FairFace-BL Cross-entropy 62K 372K R18 51.7 0.15 47.7 0.54
CelebA Cross-entropy 178K 7.1M R18 52.1 0.25 48.9 0.56
CelebA-L Cross-entropy 178K 7.1M R18 53.2 0.15 49.6 0.59
CelebA-BL Cross-entropy 178K 7.1M R18 47.0 0.14 45.9 0.47
FFHQ Cross-entropy 70K 140K R18 50.5 0.16 47.3 0.49
FFHQ-L Cross-entropy 70K 140K R18 53.5 0.31 50.5 0.62
FFHQ-BL Cross-entropy 70K 140K R18 51.0 0.23 47.3 0.54
CASIA-WebFace ArcFace 404K 404K R18 51.6 0.29 46.1 0.40
CASIA-WebFace Cross-entropy 404K 404K R18 48.6 0.21 43.2 0.34
CASIA-WebFace SphereFace 404K 404K R18 48.3 0.25 43.8 0.35
CASIA-WebFace CosFace 404K 404K R18 44.0 0.12 40.8 0.23

AVFS-C Conditional Equation (2) 5K 574K R18 67.4 0.68 61.7 0.82
AVFS-CPH Conditional Equation (2) 5K 574K R18 66.5 0.68 61.4 0.82
AVFS-U Unconditional Equation (2) 5K 574K R18 62.0 0.65 57.5 0.86
AVFS-U Unconditional Equation (2) 5K 287K R18 61.3 0.61 55.8 0.81
AVFS-U Unconditional Equation (2) 5K 144K R18 60.6 0.56 55.3 0.80
AVFS-U Unconditional Equation (2) 5K 72K R18 58.6 0.47 55.0 0.79
AVFS-Triplet Triplet margin with distance swap (Balntas et al., 2016) 5K 574K R18 60.2 0.46 52.8 0.64

ImageNet1K SwAV 1.3M 0 RN50-w5 43.8 0.08 41.0 0.30
IG-1B SwAV 1B 0 RG-32Gf 47.2 0.18 44.7 0.45
IG-1B SwAV 1B 0 RG-64Gf 48.1 0.16 44.4 0.45
IG-1B SwAV 1B 0 RG-128Gf 46.8 0.15 42.8 0.40
IG-1B SwAV 1B 0 RG-256Gf 47.8 0.17 43.1 0.41
PASS MoCo-v2 1.3M 0 R50 42.3 0.09 40.5 0.27
PASS SwAV 1.3M 0 R50 42.4 0.12 40.4 0.27
PASS DINO 1.3M 0 ViTS-16 43.2 0.10 41.8 0.32

a cross-entropy, ArcFace (Deng et al., 2019), SphereFace (Liu et al., 2017), and CosFace (Wang et al.,
2018) loss on images from 11K identities; (5) CelebA (Liu et al., 2015) is a face attribute model trained
to predict 40 binary attribute labels (e.g., Pale Skin, Young, Male); (6–7) FairFace (Karkkainen
& Joo, 2021) and FFHQ are face attribute models trained to predict gender, age, and ethnicity; (8–11)
IG-1B (Goyal et al., 2022) utilize the self-supervised SwAV (Caron et al., 2020) framework trained
on uncurated Instagram images, containing millions of images of humans; (12–14) PASS (Asano
et al., 2021) utilize self-supervised SwAV, MoCo-v2 (Chen et al., 2020), and DINO (Caron et al.,
2021) frameworks trained on images without people; (15–16) ImageNet1K (Russakovsky et al., 2015)
are a object recognition model and a self-supervised SwAV framework trained on 1.3M images with
17% of the images containing at least one human face (Yang et al., 2022).

Methods (1–7) have R18 architectures and output 128-dimensional embeddings, whereas (8–16)
correspond to official implementations that vary wrt architecture and output dimensionality. For (5–7),
we additionally consider unnormalized class logit embeddings (e.g., denoted CelebA-L), as well as
logit embeddings converted to binary vectors based on class predictions (e.g., denoted CelebA-BL).
All baseline embeddings are normalized to unit-length, where the dot product of two embeddings
determines their similarity.

5.2 SAME STIMULI

Predicting human similarity judgments. The utility of an embedding method may be determined
by measuring whether similar stimuli are closer together in feature space than dissimilar stimuli.
We first analyze whether our model results in embeddings of the stimulus set such that we are able
to predict human judgments not observed during learning. Using images from the stimulus set of
4,921 faces, we generate 1,000 novel triplets and collect 22–25 unique judgments on AMT per triplet
(24,060 judgments). In addition to odd-one-out triplet predictive accuracy, we report Spearman’s r
correlation between the entropy in human- and model-generated triplet odd-one-out probabilities.
Human-generated odd-one-out probabilities are of the form: (ni, nj , nk)/n, where, wlog, nk/n
corresponds to the fraction of n odd-one-out votes for k.

As we have 22–25 judgments per triplet, we can reliably estimate odd-one-out probabilities. The
Bayes optimal classifier accuracy corresponds to the best possible accuracy any model could achieve
given the stochasticity in the human judgments. The classifier makes the most probable prediction,
i.e., the majority judgment. Thus, its accuracy is equal to the mean majority judgment probability
over the 1,000 triplets, corresponding to 65.5±1% (95% CI).
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Dim. 1/22: South Asian

Ancestry, Skin Color, Facial
Expression

Indian, Bushy Eyebrows,
Latino Hispanic

a

b

c

Dim. 4/22: Female

Gender Expression, Age
Related, Ancestry

Female, Wearing Lipstick,
Heavy Makeup

Dim. 5/22: Smiling

Facial Expression, Skin
Color, Mouth Related

Smiling, High Cheekbones,
Rosy Cheeks

Dim. 10/22: Wide Face

Face Shape, Facial Expres-
sion, Weight Related

Double Chin, High Cheek-
bones, Smiling

Dim. 11/22: Elderly

Age Related, Ancestry, Hair
Color

70+, 60–69, Gray Hair

Dim. 18/22: Balding

Hair Length, Gender Ex-
pression, Ancestry

Bald, Gray Hair, Wearing
Necktie

Figure 1: For a subset of the 22 AVFS-U dimensions, we show: (a) the highest scoring stimulus set
images; (b) the highest frequency topic labels generated by human annotators; and (c) dimension
labels generated using CelebA and FairFace face attribute recognition models.

Results are shown in Table 1, evidencing that AVFS trained models outperform the baselines even
when learning is performed on a fraction of the available judgments (e.g., 72K judgments). Table 1
shows three interesting results. First, the uncertainty in human- and AVFS model-generated triplet
odd-one-out probabilities are highly correlated, underscoring the human-like ability of our model.
Second, our conditional models have increased performance over their unconditional counterparts,
showing that the learned annotator-specific masks generalize. Moreover, our conditional models
attain a predictive accuracy at or above the upper bound of the Bayes optimal classifier. Finally, as
posited in Section 3, transforming AVFS into a dataset of standard triplets constraints with anchors
results in lower performance due to a reduction in information.

Are the learned dimensions human-interpretable? Since we aim to replace the explicit collection of
problematic categorical labels, we evaluate whether the individual dimensions are human-interpretable
through a qualitative dimension labeling task (Hebart et al., 2020; Josephs et al., 2021). In what
follows, let xi and ReLU(wi) denote an image from the stimulus set of 4,921 faces and its cor-
responding 22-dimensional embedding, resp. Further, let %tile

q
j denote the q-th percentile of the

dimension j embedding values. We define gridj as a 5 × 100 grid of faces. Column q ∈ [100, . . . , 1]
of gridj corresponds to faces from the stimulus set of 4,921 faces with the top 5 highest dimension j

embedding values, satisfying %tile
q−1
j ≤ ReLU(w)j < %tile

q
j . Thus, from left (high) to right (low),

gridj shows example faces from each percentile for dimension j. We task annotators with writing
1–3 visual characteristics that describe gridj . For each gridj , we collect 25–62 labels. As the task is
open-ended, we manually convert the labels into 35 broad topics.

Figure 1 provides evidence of the interpretability for a random subset of AVFS-U dimensions. There
is clear relationship between the dimension topics obtained from annotator descriptions and dimension
labels generated using CelebA and FairFace models. Across the 22 dimensions, we note the material-
ization of individual dimensions coinciding with commonly defined demographic groups, i.e., Male,
Female, Black, White, East Asian, South Asian, and Elderly. In addition, separate
dimensions surfaced for face and hair morphology, i.e., Wide Face, Long Face, Smiling
Expression, Neutral Expression, Balding, Facial Hair, and Dyed Hair. This is
achieved without ever asking an annotator to explicitly categorize a person.

5.3 NOVEL STIMULI

Predicting human similarity judgments. Next, we analyze whether our model transfers to novel
stimuli. To do so, we sample 56 novel face images from FFHQ not contained in the stimulus set. We
then generate all

(
56
3

)
possible triplets and collect 2–3 unique judgments on AMT per triplet (80,300

judgments). In addition to odd-one-out predictive accuracy, we report Spearman’s r between the
strictly upper triangular model- and human-generated similarity matrices. Entry (i, j) in the human-
generated similarity matrix corresponds to the fraction of triplets containing (i, j), where neither was
judged as the odd-one-out. Entry (i, j) in a model-generated similarity matrix corresponds to the
mean p̂(i, j) over all triplets containing (i, j).

Results are again shown in Table 1 and largely follow the same trend to what we observe in the same
stimuli setting. The results underscore that AVFS models generalize to arbitrary, novel face image
stimuli, in particular, based on the correlation tests, the AVFS induced embedding space accurately
reflects the human mental representational space of faces. This is significant as it shows that our
model provides an effective similarity measure well-aligned with human perception.
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Table 2: (a) Average AUC of linear SVM trained to discriminate between AVFS-CPH annotator
masks from different demographic groups. (b) Spearman’s r between CFD face attribute typicality
ratings and model-generated attribute values.

(a)

Annotator Attribute Groups #Masks AUC

Age Group 30-39 / 40-49 393 / 121 0.59 ± 0.05
Gender Identity Male / Female 523 / 473 0.65 ± 0.05
Nationality America / India 530 / 204 0.86 ± 0.03
Regional Ancestry Europe / Asia 407 / 243 0.86 ± 0.03
Subregional Ancestry West Europe / South Asia 173 / 107 0.88 ± 0.05

(b)

Attribute

Model Masculine Feminine East Asian Black White

AVFS-U 0.813 0.840 0.747 0.683 0.644
CelebA 0.858 0.855 — — 0.123
FairFace 0.836 0.827 0.806 0.653 0.645
FFHQ 0.812 0.829 0.794 0.587 0.688

Number of dimensions required to represent a face. To quantify the number of dimensions
required to represent a face while preserving performance, we follow Hebart et al. (2020)’s dimension-
elimination approach. We iteratively zero out the lowest value per face embedding until a single
nonzero dimension remains. As this is done per embedding, the same dimension is not necessarily ze-
roed out from all embeddings during the same iteration. To obtain 95–99% of the predictive accuracy
6–13 dimensions are required, whereas to explain 95–99% of the variance in the similarity matrix
we require 15–22 dimensions. This shows that (1) humans utilize a larger number of dimensions
to represent the global similarity structure of faces than for determining individual odd-one-out
judgments; and (2) similarity judgments are dynamic and context-dependent.

Are annotators interchangeable? Conditioning prediction on annotator identifiers provides the
best predictive accuracy, evidencing that knowledge of the annotator determining similarity assists
in informing the outcome. However, annotators are often framed as interchangeable (Malevé,
2020; Chancellor et al., 2019). To test the validity of this assumption, we randomly swap the
annotator associated with each judgment and then recompute the predictive accuracy using the
AVFS-CPH model. Repeating this process 100 times results in a performance drop from 61.7% to
52.8% ± 0.02% (95% CI) on average. This shows that annotator subspaces, and hence annotators,
are not interchangeable.

Are annotators influenced by their sociocultural background? An interesting question relates
to whether an annotator’s sociocultural background influences their decision making. To evaluate
this, we create datasets {(σ(va), y)}, where σ(va) and y ∈ Y are annotator a’s learned mask and
self-identified demographic attribute, resp. For a particular annotator attribute (e.g., nationality), we
limit the dataset to annotators who contributed ≥ 200 judgments and belong to one of the two largest
groups wrt a self-identified demographic attribute. Using 10-fold cross validation, we train linear
SVMs (Hearst et al., 1998) with balanced class weights to predict y from σ(va). Table 2a shows the
average AUC for each attribute. Most significantly, none of the AUC confidence intervals include
chance performance. The linear SVMs are able to discriminate between binary groups wrt nationality,
regional ancestry, and subregional ancestry with high probability (86–88%).

Continuous attribute value collection via the learned dimensions. Let µq
j denote the mean value

of AVFS-U dimension j embedding values of all 4,921 faces from the stimulus set, satisfying
%tile

q−1
j ≤ ReLU(w)j < %tile

q
j . For the dimension rating task, annotators must place novel faces

(e.g., x) above a single column q of gridj . Placement is based on the similarity between x and
the faces contained in each column q of gridj . Annotators are not primed with the meaning of
gridj . If x is accurately placed on gridj , then this indicates that the ordering of dimension j
is visually coherent. To test this, we sample 20 novel faces from FFHQ, i.e., the faces are not
contained in the stimulus set. ∀(x, gridj), we collect 20 unique judgments (8,800 judgments). From
the judgments, for each x, we create 22-dimensional human-generated embeddings of the form:
[ 1
20

∑20
n=1 µ

an
1 , . . . , 1

20

∑20
n=1 µ

an
22 ], where an ∈ [100, . . . , 1] denotes the n-th annotator’s column

choice q. Next, we generate all
(
20
3

)
possible triplets to create a human-generated similarity matrix

M ∈ R20×20. Entry (i, j) in M corresponds to the mean p̂(i, j) over all triplets containing (i, j)
using the human-generated embeddings. We create a model-generated matrix in the same way, but
this time using the model-generated embeddings.

Spearman’s r correlation between the strictly upper triangular model- and human-generated similarity
matrices is 0.83 and 0.86 for AVFS-U and AVFS-C-PH, resp. This shows that (1) dimensional values
correspond to the feature magnitude; and (2) image grids can be used to directly collect continuous
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Table 3: Results for (a) semantic binary-valued attribute classification AUC; and (b) comparative
dataset attribute disparity estimation. (Note that ⋆ denotes that the ground-truth attribute value is
self-reported by an image subject, whereas gray values indicate that a model was trained on the same
data it is tested on.)

(a)

Model (AUC)

Face Data Attribute AVFS-U CelebA FairFace FFHQ

CasCon > 70 y.o.⋆ 0.800 0.936 0.959 0.962
FFHQ > 70 y.o. 0.905 0.959 0.971 0.980
CFD Male⋆ 0.991 0.997 0.996 0.998
CasCon Male⋆ 0.971 0.986 0.990 0.981
CelebA Male 0.990 0.999 0.994 0.995
COCO Male 0.893 0.926 0.963 0.958
MIAP Male 0.924 0.942 0.945 0.938
FFHQ Male 0.933 0.959 0.988 0.996
CelebA Smiling 0.895 0.982 — —
CFD Happy 0.969 0.992 — —
CFD Neutral 0.731 — — —
CFD East Asian⋆ 0.969 — 0.955 0.938
CFD Black⋆ 0.992 — 0.992 0.988
CFD White⋆ 0.972 0.889 0.990 0.988
CFD Indian⋆ 0.960 — 0.848 0.883
CasCon Light skin 0.930 0.830 0.965 0.960
COCO Light skin 0.889 0.771 0.927 0.931
CelebA Balding 0.963 0.995 — —

(b)

Model (Disparity ∆ / Spearman’s r)

Dataset Attribute AVFS-U CelebA FairFace FFHQ

CasCon > 70 y.o.⋆ 0.22 / 0.96 0.06 / 0.99 0.06 / 0.95 0.08 / 0.99
FFHQ > 70 y.o. 0.16 / 0.95 0.10 / 0.89 0.02 / 0.99 0.02 / 1.00
CFD Male⋆ 0.00 / 1.00 0.08 / 0.99 0.02 / 1.00 0.02 / 1.00
CasCon Male⋆ 0.06 / 0.97 0.02 / 0.99 0.02 / 1.00 0.04 / 0.99
CelebA Male 0.10 / 0.96 0.04 / 1.00 0.12 / 0.96 0.04 / 0.98
COCO Male 0.06 / 0.98 0.06 / 0.97 0.06 / 0.99 0.00 / 1.00
MIAP Male 0.04 / 0.99 0.04 / 1.00 0.04 / 0.97 0.06 / 0.99
FFHQ Male 0.14 / 0.83 0.14 / 0.93 0.08 / 1.00 0.04 / 1.00
CelebA Smiling 0.30 / 0.78 0.14 / 0.97 — —
CFD Happy 0.12 / 0.99 0.06 / 0.95 — —
CFD East Asian⋆ 0.06 / 1.00 — 0.02 / 0.98 0.02 / 1.00
CFD Black⋆ 0.10 / 0.98 — 0.14 / 0.97 0.00 / 1.00
CFD White⋆ 0.04 / 1.00 0.02 / 0.99 0.04 / 0.97 0.04 / 0.99
CFD Indian⋆ 0.08 / 1.00 — 0.30 / 0.73 0.08 / 0.87
CasCon Light skin 0.06 / 0.94 0.3 / 0.65 0.18 / 0.85 0.06 / 0.99
COCO Light skin 0.22 / 0.89 0.96 / 0.02 0.24 / 0.87 0.02 / 1.00
CelebA Balding 0.10 / 0.98 0.06 / 1.00 — —

attribute values for faces, sidestepping the limits of categorical definitions (Keyes, 2018; Benthall &
Haynes, 2019; Khan & Fu, 2021). Note that the use of an image grid is not restricted to any particular
embedding method, as long as the dimension is human-interpretable.

Correlation between feature magnitude and prototypicality. In cognitive science, the prototypical-
ity of an entity corresponds to the extent to which it “belongs” to a conceptual category (Rosch, 1973).
Having shown that a proportion of our model’s dimensions are related to conceptual social categories,
we now evaluate whether the value of a face along a dimension corresponds to its typicality. We
utilize face images labeled with prototypicality ratings from the Chicago Face Database (CFD) (Ma
et al., 2015; Lakshmi et al., 2021; Ma et al., 2021). The ratings (obtained from human annotators)
correspond to the average prototypicality of a face wrt a race category from one (less typical) to
five (very typical), considering skin color, hair, eyes, nose, cheeks, lips, and other physical features.
For gender expression, ratings correspond to the typicality of the face relative to others of the same
race and gender in the US from one (not at all typical) to seven (extremely typical). For each
conceptual category, we extract a face’s dimensional value or unnormalized attribute logit from a
relevant AVFS-U dimension or attribute recognition model’s classification layer, resp.

Table 2b shows that relevant AVFS-U dimensions are positively correlated with the typicality ratings
according to Spearman’s r. This (1) adds to the evidence that dimensional values correspond to
feature magnitude; and (2) shows category typicality, at least for the investigated social category
concepts, manifests in the learned dimensions from learning to predict human similarity judgments.

Semantic classification without semantically labeled training data. In light of the human-
interpretability of our model’s dimensions and results confirming that dimensional values correspond
to the degree to which an attribute manifests in a face, we compare the AVFS-U dimensions with face
attribute recognition models on the task of semantic binary-valued attribute classification. For face
data, we use the following datasets: COCO (Lin et al., 2014), OpenImages MIAP (MIAP) (Schumann
et al., 2021), CFD, FFHQ, CelebA (Liu et al., 2015), and Casual Conversations (CasCon) (Hazirbas
et al., 2021). Continuous face attribute values are extracted in the same manner as in the earlier
prototypicality experiment.

As shown in Table 3a, AVFS-U dimensions are competitive with face attribute recognition models,
even in challenging unconstrained settings (i.e., COCO and MIAP). Training on AVFS not only
results in a human-interpretable decomposition of the dimensions used by humans when determining
face similarity, but also dimensions that can individually serve as semantic attribute classifiers.

Comparative dataset attribute disparity estimation. Finally, inspired by biodiversity mea-
sures (Leinster & Cobbold, 2012), we propose to use our learned dimensions for comparative
dataset attribute disparity estimation. Concretely, given a set of candidate datasets {Dk}nk=1 and a
binary-valued attribute y, we aim to find D⋆ ∈ {Dk}nk=1 with the smallest attribute disparity. Let
qk ∈ [0, 0.01, . . . , 0.99, 1] and 1 − qk denote the proportion of images x ∈ Dk labeled y = 0 and
y = 1, resp. We define the similarity between (xi,xj) ∼ D as abs(ŷi − ŷj)

−1, where ŷ ∈ R is a
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predicted continuous attribute value for y given x. In biodiversity terms, the average ordinariness of
faces in a the set of samples, D, is ∝

∑
i

∑
j abs(ŷi − ŷj)

−1 (∀i). This quantity is large when most
faces in D are concentrated into a few very similar faces. As concentration is inversely connected to
diversity, we can interpret the average dissimilarity, i.e., |D|−2

∑
i

∑
j abs(ŷi − ŷj), as a diversity

score.

For face data, we use COCO, MIAP, CFD, FFHQ, CelebA, and CasCon. To determine D⋆, wrt an
attribute y, we extract a face’s dimensional value or unnormalized attribute logit from a relevant
AVFS-U dimension or attribute recognition model’s classification layer, resp. We bootstrap each Dk

100 times, where |Dk| = 100 (∀k). We report (1) the attribute disparity in D⋆, i.e., ∆ = abs(2qk−1);
and (2) Spearman’s r correlation between the k bootstrapped average diversity scores and the k
ground-truth disparity scores. Results are shown in Table 3b and confirm that AVFS-U dimensions are
competitive with the baselines, despite not being learned on semantically labeled data. Spearman’s r
highlights that AVFS-U disparity scores are highly correlated with ground truth disparity based on
labels.

6 DISCUSSION AND CONCLUSION

We proposed a method for implicitly learning continuous face-varying dimensions, without ever
asking an annotator to explicitly categorize a person. We uncovered the face embedding space by
learning on a novel dataset of human judgments of face similarity (AVFS). We showed that the
individual dimensions are human-interpretable and related to concepts of gender, race, age, as well
as face and hair morphology categories. We demonstrated the utility of our learned embedding
space for predicting face similarity judgments, collecting continuous face attribute values, binary-
attribute classification, and comparative dataset attribute diversity auditing. Moreover, using a novel
conditional framework, we showed that an annotator’s demographics influences the importance they
place on different attributes when judging similarity, underscoring the need for diverse annotator
groups to avoid biases. As our conditional decision-making framework is generally applicable to any
task that involves mapping from inputs to decisions made by humans, it would be interesting to study
the behavior of annotators in other visual tasks.

Our work is not without its limitations. First, we assume that the stimuli set is sufficiently diverse.
Therefore, our current proposal is limited to the proof of concept that our approach can only uncover
factors that vary in the data and are salient to human perception of face similarity. For instance, if
skin color does not vary among data instances, then skin color cannot possibly influence human
judgments, rendering it impossible to learn skin color as a face dimension. Second, the number of
(near) nonzero dimensions depends on the L1 sparsity penalty, which must be carefully chosen. Too
high of a penalty will result in the entanglement of distinct factors of variation, whereas too low of a
penalty will result in repeated dimensions. We erred on the side of caution (lower penalty) to avoid
merging distinct factors, which would reduce interpretability. Third, we found that participants did
not always follow our instructions in full. Dimensions emerged corresponding to facial expression,
which participants were instructed to ignore. Finally, our participant pool was demographically
imbalanced, which is an unfortunate consequence of using AMT.

Despite the limitations, we have shown that similarity judgments are a valuable means by which to
reveal the human mental representations of faces. Of particular note is the fact this was achieved by
learning on 0.003% of all possible triplets from 4,921 faces. We hope that our work inspires others
to pursue unorthodox tasks for learning the dimensions of human diversity, which do not require
annotators to explicitly categorize people. Moreover, we aim to increase discourse on annotator
positionality. As the philosopher Thomas Nagel suggested, it is impossible to take a “view from
nowhere” (Nagel, 1989). Therefore, we need to make datasets more inclusive by integrating a diverse
set of perspectives from their inception.
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