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Abstract

Network pruning is a widely-used compression technique that is able to significantly1

scale down overparameterized models with minimal loss of accuracy. This paper2

shows that pruning may create or exacerbate disparate impacts. The paper sheds3

light on the factors to cause such disparities, suggesting di↵erences in gradient4

norms and distance to decision boundary across groups to be responsible for this5

critical issue. It analyzes these factors in detail, providing both theoretical and6

empirical support, and proposes a simple, yet e↵ective, solution that mitigates the7

disparate impacts caused by pruning.8

1 Introduction9

As deep learning models evolve and become more powerful, they also become larger and more10

costly to store and execute. The trend hinders their deployment in resource-constrained platforms,11

such as embedded systems or edge devices, which require e�cient models in time and space.12

To address this challenge, studies have developed a variety of techniques to prune the relatively13

insignificant or insensitive parameters from a neural network while ensuring competitive accuracy14

[1, 4, 5, 23, 24, 25, 30]. When a model needs to be developed to fit given and certain requirements in15

size and resource consumption, a pruned model which is derived from a large, rigorously-trained,16

and (often) over-parameterized model, is regarded as a de-facto standard. That is because it performs17

incomparably better than a same-size dense model which is trained from scratch, when the same18

amount of e↵ort and resources are invested.19

In spite of the strengths of pruning, this paper shows that pruning can induce or exacerbate disparate20

e↵ects in the accuracy of the resulting reduced models. Intuitively, the removal of model weights21

a↵ects the process in which the network separates di↵erent classes, which can have contrasting22

consequences for di↵erent groups of individuals. Specifically, this paper shows that the accuracy of23

the pruned models tends to increase (decrease) more in classes that had already high (low) accuracy24

in the original model, leading to a “the rich get richer” and “the poor get poorer” e↵ect. This Matthew25

e↵ect is illustrated in Figure 1. The figure shows the accuracy of a facial recognition task on di↵erent26

demographic groups for several pruning rates (indicating the percentage of parameters removed from27

the original models). Notice how the accuracy of the majority group (White) tends to increase while28

that of the minority groups tends to decrease as the pruning ratio increases.29

Following these observations, the paper sheds light on the factors to cause such disparities. The30

theoretical findings suggest the presence of two key factors responsible for why accuracy disparities31

arise in pruned models: (1) disparity in gradient norms across groups, and (2) disparity in Hessian32

matrices associated with the loss function computed using a group’s data. Informally, the former33

carries information about the groups’ local optimality, while the latter relates to model separability.34

The paper analyzes these factors in detail, providing both theoretical and empirical support on a35

variety of settings, networks, and datasets.36
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Figure 1: Accuracy of each demographic group in the UTK-Face dataset using Resnet18 [14], at the
increasing of the pruning rate.

By recognizing these factors, the paper also develops a simple yet e↵ective training technique that37

largely mitigates the disparate impacts caused by pruning. The method is based on an alteration of38

the loss function to include components that penalize disparity of the average gradient norms and39

distance to decision boundary across groups.40

These findings are significant: Pruning is a key enabler for neural network models in embedded41

systems with deployments in security cameras and sensors for autonomous devices for applications42

where fairness is an essential need. (e.g., face recognition), Without careful consideration of the43

fairness impact of these techniques, the resulting models can have profound e↵ects on our society and44

economy. To the best of the authors’ knowledge, this work is the first to note, analyze, and mitigate45

the disparities arising due to network pruning, providing what the authors believe will be a useful46

tool for researchers and practitioners in this field.47

Related work48

Fairness and network pruning have been long studied in isolation. The reader is referred to the related49

papers and surveys on fairness [3, 6, 8, 13, 17] and pruning [1, 4, 5, 23, 24, 25, 30] for a review on50

these areas. Their intersection, however, received little attention.51

The recent interest in assessing societal values of machine learning models has seen an increase of52

studies at the intersection of di↵erent properties of a learning model and their e↵ects on fairness. For53

example, Xu et al. [28] studies the setting of adversarial robustness and show that adversarial training54

introduces unfair outcomes in term of accuracy parity [31]. Zhu et al. [33] show that semisupervised55

settings can introduce unfair outcomes in the resulting accuracy of the learned models. Finally,56

several authors have also shown that private training can have unintended disparate impacts to the57

resulting models’ outputs [2, 10, 26, 32] and downstream decisions [22, 27].58

Unfortunately, the literature on the fairness e↵ects of pruning, or more generally, network compression,59

has received very sparse attention. Hosseini et al. [15] observed empirically that knowledge distillation60

processes may produce unfair student models and Paganini [20] observed that a form of network61

compression can introduce accuracy disparity among di↵erent groups.62

These observations are however poorly understood and have not received the attention they deserve63

given their broad impact on various population segments. It is the goal of this paper to address this64

critical knowledge gap and provide a step towards a deeper understanding of the fairness issues65

arising as a result of pruning.66

2 Problem settings and goals67

The paper considers datasets D consisting of n datapoints (xi, ai, yi), with i 2 [n], drawn i.i.d. from68

an unknown distribution ⇧. Therein, xi 2 X is a feature vector, ai 2 A withA = [m] (for some finite69

m) is a demographic group attribute, and yi 2 Y is a class label. For example, consider the case of a70

face recognition task. The training example feature xi may describe a headshot of an individual, the71

protected attribute ai may describe the individual’s gender or ethnicity, and yi represents the identity72

of the individual. The goal is to learn a predictor f✓ : X! Y, where ✓ is a k-dimensional real-valued73
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vector of parameters that minimizes the empirical risk function:74

?

✓= argmin
✓

J(✓; D) =
1
n

nX

i=1

`( f✓(xi), yi), (1)

where ` : Y ⇥Y ! R+ is a non-negative loss function that measures the model quality.75

The paper focuses on analyzing properties arising when extracting a small model f✓̄ with ✓̄ ⇢
?

✓ of76

size |✓̄| = k̄ ⌧ k. Model f✓̄ is constructed by pruning the least important values or filters from vector77
?

✓ (i.e., those with smaller values in magnitude) according to a prescribed criterion, such as an `p78

norm [18, 24]. The paper focuses on understanding the fairness impacts (as defined next) arising79

when pruning general classifiers, such as neural networks.80

Fairness The fairness analysis focuses on the notion of excessive loss, defined as the di↵erence81

between the original and the pruned risk functions over some group a 2 A:82

R(a) = J(✓̄; Da) � J(
?

✓; Da), (2)

where Da denotes the subset of the dataset D containing samples (xi, ai, yi) whose group membership83

ai = a. Intuitively, the excessive loss represents the change in loss (and thus, in accuracy) that a given84

group experiences as a result of pruning. Fairness is measured in terms of the maximal excessive loss85

di↵erence, also referred to as fairness violation:86

⇠(D) = max
a,a02A

|R(a) � R(a0)|, (3)

defining the largest excessive loss di↵erence across all protected groups. (Pure) fairness is achieved87

when ⇠(D) = 0, and thus a fair pruning method aims at minimizing the excessive loss di↵erence.88

The goal of this paper is to shed light on why fairness issues arise (i.e., R(a) > 0) as a result of89

pruning, why some groups su↵er more than others (i.e., R(a) > R(a0)), and what mitigation measures90

could be taken to minimize unfairness due to pruning.91

The paper uses the following notation: variables are denoted by calligraph symbols, vectors or92

matrices by bold symbols, and sets by uppercase symbols. Finally, k · k denotes the Euclidean norm93

and the paper uses f✓(x) to refer to the model’ soft outputs. All proofs are reported in Appendix A.94

3 Fairness analysis in pruning: Roadmap95

To gain insights on how pruning may introduce unfairness, the paper starts with providing a useful96

upper bound for a group’s excessive loss. Its goal is to isolate key aspects of model pruning that are97

responsible for the observed unfairness. The following discussion assumes the loss function `(·) to be98

at least twice di↵erentiable, which is the case for common ML loss functions, such as mean squared99

error or cross entropy loss.100

Theorem 1. The excessive loss of a group a 2 A is upper bounded by1:101

R(a) 
���g`a
��� ⇥
���✓̄�

?

✓

��� +
1
2
�
⇣
H
`
a

⌘
⇥

���✓̄�
?

✓

���2 + O
✓���✓̄�

?

✓

���3
◆
, (4)

where g
`
a = r✓J(

?

✓; Da) is the vector of gradients associated with the loss function ` evaluated at
?

✓102

and computed using group data Da, H`
a = r

2
✓J(

?

✓; Da) is the Hessian matrix of the loss function `, at103

the optimal parameters vector
?

✓, computed using the group data Da (henceforth simply referred to as104

group hessian), and �(⌃) is the maximum eigenvalue of a matrix ⌃.105

The bound above follows from a second order Taylor expansion of the loss function, Cauchy-Schwarz106

inequality, and properties of the Rayleigh quotient.107

Notice that, in addition to the di↵erence in the original and pruned parameters vectors, two key108

terms appear in Equation (4): (1) The norms of the gradients g`a and (2) the maximum eigenvalue109

of the Hessian matrix H
`
a for a group a. Informally, the former is associated with the groups’ local110

1With a slight abuse of notation, the results refer to ✓̄ as the homonymous vector which is extended with
k � k̄ zeros.
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optimality while the latter relates to the ability of the model to separate the groups data. As we will111

show next these components represent the main sources of unfairness due to model pruning.112

The following is an important corollary of Theorem 1. It shows that the larger the pruning, the larger113

will be the excessive loss for a given group.114

Corollary 1. Let k̄ and k̄0 be the size of parameter vectors ✓̄ and ✓̄
0, respectively, resulting from115

pruning model f?✓ , where k̄ < k̄0 (i.e., the former model prunes more weight than the latter one). Then,116

for any group a 2 A,117

R̃(a, ✓̄) � R̃(a, ✓̄0), (5)

where R̃(a,!) is the excessive loss upper bound computed using pruned model parameters ! (Eq. (4)).118

A consequence of the corollary above is that as the pruning regime increases, the unfairness in119

accuracy across groups may also become more significant, which the paper shows next.120

The next sections analyze the e↵ect of gradient norms and the Hessian to unfairness in the pruned121

models. The theoretical claims are supported and complemented by analytical results. These results122

use the UTKFace dataset [29] for a vision task whose goal is to classify ethnicity. The experiments123

use a ResNet-18 architecture and the pruning counterparts remove the P% parameters with the124

smallest absolute values for various P. All reported metrics are normalized and an average of 10125

repetitions. While the theoretical analysis focuses on the notion of disparate impacts under the lens126

of excessive loss, the empirical results report di↵erences in accuracy of the resulting models. The127

empirical results thus reflect the setting commonly adopted when measuring accuracy parity [31].128

The paper reports a glimpse of the empirical results, with the purpose of supporting the theoretical129

claims, and extended experiments, as well as additional descriptions of the datasets and settings, are130

reported in Appendix C.131

4 Why disparity in groups’ gradients causes unfairness?132

This section analyzes the e↵ect of gradients norms on the unfairness observed in the pruned models.133

In more detail, it shows that unbalanced datasets result in a model with large di↵erences in gradient134

norms between groups (Proposition 1), it connects gradients norms for a group with the resulting135

model errors in such a group (Proposition 2), and connects these concepts with the excessive loss136

(Theorem 1) to show that unfairness in model pruning is largely controlled by the di↵erence in137

gradient norms among groups.138

Figure 2: Group size vs. gradient norms.

Gradient norms and group sizes. The section first shows139

that imbalanced datasets lead a model to have imbalanced140

gradient norms across groups. The following result assumes141

that the training converges to a local minima.142

Proposition 1. Consider two groups a and b inA with |Da| �143

|Db|. Then
���g`a
��� 
���g`b
��� .144

That is, groups with more data samples will result in smaller145

gradients norms than groups with fewer data samples and146

vice-versa. Figure 2 illustrates Proposition 1. The plot shows147

the relation between groups sizes |Da| and their associated gradient norms kg`ak on the UTK dataset148

and settings described above. Notice the strong trend between decreasing group sizes and increasing149

gradient norms for such groups.150

Gradient norms and accuracy. Next, the section shows a strong connection between the gradient151

norms of a group and its associated accuracy. The following assumes the models adopt a cross152

entropy loss (or mean squared error for regression tasks, as shown Appendix A).153

Proposition 2. For a given group a 2 A, gradient norms can be upper bounded as:154

kg
`
ak 2 O

0
BBBBBBBBBB@

X

(x,y)2Da

k f?✓(x) � yk
|        {z        }

Accuracy

⇥

���r✓ f?✓(x)
���

1
CCCCCCCCCCA
.
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(a) Accuracy (b) Gradient Norm: kg`ak (c) Group Hessian: �(H`
a)

Figure 4: Accuracy, gradient norm, and group Hessian max eigenvalues of each ethnicity group,
before and after increasing pruning ratios for UTK-Face dataset. The percentage of data samples
across groups White, Black, Asian, Indian, and Others is ⇠ 0.42, 0.19, 0.15, 0.15, 0.07, respectively.

The above relates gradient norms with an error measure of the classifier to a target label multiplied155

by the gradient of the predictions. For example, in a classification task with cross entropy loss,156

`( f✓(x), y) = �
P

z2Y f z
✓(x)yz, where f z

✓(x) represents the z-th element of the output associated with157

the soft-max layer of model f✓ , and y is a one-hot encoding of the true label y, with y
z representing158

its z-th element, then,159

kgak = kr✓J(✓; Da, )k =

��������
1/|Da |

X

(x,y)2Da

r f `( f✓(x), y) ⇥ r✓ f✓(x)

��������

=

��������
1/|Da |

X

(x,y)2Da

( f✓(x) � y) ⇥ r✓ f✓(x)

��������

 1/|Da |

X

(x,y)2Da

k f✓(x) � yk ⇥ kr✓ f✓(x)k .

Figure 3: Accuracy vs. gradient norms.

A similar observation holds for mean square error loss, as160

illustrated in Appendix A. The observation above sheds light161

on the correlation between the prediction error of a group and162

its model gradients. This relation is emphasized in Figure 3,163

which illustrates that the gradient norm for a given group increases as its prediction accuracy decreases.164

Proposition 2 allows us to link the gradient norms with the group accuracy of the resulting model,165

which, together with the result above will be useful to reason about the impact of gradient norms on166

the disparities in the group excessive losses.167

The role of gradient norms in pruning. Having highlighted the connection between gradients168

norms of a group with the accuracy of the pruned model on such a group, this section provides169

theoretical intuitions on the role of gradient norms in the disparate group losses during pruning.170

From Theorem 1, notice that the excessive loss is controlled by term kg`ak ⇥ k✓̄�
?

✓ k. As already171

noted in Corollary 1, the term k✓̄�
?

✓ k regulates the impact of pruning on the excessive loss, as the172

di↵erence between the pruned and non-pruned parameters vectors directly depends on the pruning173

rate. For a fixed pruning rate, however, notice that groups with di↵erent gradient norms will have a174

disparate e↵ect on the resulting term. In particular, groups with very small gradients norms (those175

generally associated with highly accurate predictions) will be less sensitive to the e↵ects of the176

pruning rate. Conversely, groups with large gradient norms will be a↵ected by the pruning rate to a177

greater extent, with larger pruning rates, typically reflecting in larger excessive losses.178

These observations of the factors of disparity, accuracy, and group size, can also be appreciated179

empirically in Figures 4a and 4b. The plots report accuracy (a) and gradient norms (b) on the180

UTKFace datasets for a variety of pruning rates. Consider group White (containing 42% of the total181

samples) and Others (containing 7% of the total samples). The unpruned model has high accuracy182

on the former group and small gradient norms. The accuracy of this group is insensitive to various183

pruning rates and even increases at large pruning regimes. In contrast, group Others has much184

lower accuracy and larger gradient norms in the unpruned model. As the pruning rate increase, their185
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accuracies drastically drop. As a result, in high pruning regimes, this minority group exhibits poor186

accuracy and very high gradient norms.187

Notice that the empirical results apply to much more complex settings than those which can be188

analyzed formally, thus they complement the theoretical observations.189

5 Why disparity in groups’ Hessians causes unfairness?190

Having examined the properties of the groups gradients and their relation to unfairness in pruning,191

this section turns on analyzing how the Hessian associated with the loss function for a group is linked192

to the unfairness observed during pruning. In more detail, it connects the groups’ Hessian to the193

distance to the decision boundary for the samples in that group and their resulting model errors194

(Theorem 3), it illustrates a strong positive correlation between groups’ Hessian and gradient norms,195

and links these concepts with the excessive loss (Theorem 1) to show that unfairness in model pruning196

is controlled by the di↵erence in maximum eigenvalues of the Hessians among groups.197

Group Hessians and accuracy. The section first shows that groups presenting large Hessian values198

may su↵er larger disparate impacts due to pruning, when compared with groups that have smaller199

Hessians. It does so by connecting the maximum eigenvalues of the groups Hessians with their200

distance to decision boundary and the group accuracy. The following result sheds light on these201

observations. It restricts its attention to models trained under binary cross entropy losses, for clarity202

of explanation, although an extension to a multi-class case is directly attainable.203

Theorem 2. Let f✓ be a binary classifier trained using a binary cross entropy loss. For any group204

a 2 A, the maximum eigenvalue of the group Hessian �(H`
a) can be upper bounded by:205

�(H`
a) 

1
|Da|

X

(x,y)2Da

⇣
f?✓(x)

⌘ ⇣
1 � f?✓(x)

⌘

|                  {z                  }
Distance to decision boundary

⇥

���r✓ f?✓(x)
���2 +
��� f?✓(x) � y

���
|      {z      }

Accuracy

⇥�
⇣
r

2
✓ f?✓(x)

⌘
. (6)

The proof relies on derivations of the Hessian associated with model loss function and Weyl inequality.206

In other words, Theorem 3 highlights a direct connection between the maximum eigenvalue of the207

group Hessian and (1) the closeness to the decision boundary of the group samples, and (2) the208

accuracy of the group. The distance to the decision boundary is derived from [7]. Intuitively this209

term is maximized when the classifier is highly uncertain about the prediction: f?✓(x) ! 0.5, and210

minimized when it is highly certain f?✓(x)! 0 or 1, as showed in the following proposition.211

Proposition 3. Consider a binary classifier f✓(x). For a given sample x 2 D, the term f?✓(x)(1 �212

f?✓(x)) is maximized when f?✓(x) = 0.5 and minimized when f?✓(x) 2 {0, 1}.213

Figure 5: Group Hessians, distance to
decision boundary, and accuracy.

Observe that a group consisting of samples that are far from214

the decision boundary will have smaller Hessians and, thus, be215

less subject to a drop in accuracy due to model pruning. These216

results can be appreciated in Figure 5. Notice the inverse217

relationship between maximum eigenvalues of the groups’218

Hessians and their average distance to the decision boundary.219

The same relation also holds for accuracy: the higher the220

Hessians maximum eigenvalues, the smaller the accuracy. This221

is intuitive as samples which are close to the decision boundary222

will be more prone to errors due to small changes in the model223

due to pruning, when compared with samples lying far from the decision boundary.224

Correlation between group Hessians and gradient norms. This section observes a positive225

correlation between maximum eigenvalues of the Hessian of a group and their gradient norms. This226

relation can be appreciated in Figure 6. While mainly empirical, this observation is important as it227

illustrates that both the Hessian �(H`
a) and the gradient kg`ak terms appearing in the upper bound of228

the excessive loss R(a) reported in Theorem 1 are in agreement. This relation was observed in all229

our experiments and settings. Such observation allows us to infer that it is the combined e↵ect of230

gradient norms and group Hessians that is responsible for the excessive loss of a group and, in turn,231

for the exacerbation of unfairness in the pruned models.232
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Figure 6: Group Hessians and gra-
dient norms.

The role of the group Hessian in pruning. Having highlighted233

the connection between Hessian for a group with the resulting234

accuracy of the model on such a group, this section provides235

theoretical intuitions on the role of the Hessians in the disparate236

group losses during pruning.237

In Theorem 1, notice that the excessive loss is controlled by term238

kH
`
ak ⇥ k✓̄�

?

✓ k
2. As also noted in the previous section, the term239

k✓̄�
?

✓ k regulates the impact of pruning on the excessive loss240

as the di↵erence between the pruned and non-pruned parameters241

vectors directly depends on the pruning rate. Similar to the obser-242

vation for gradient norms, with a fixed pruning rate, groups with243

di↵erent Hessians will have a disparate e↵ect on the resulting term. In particular, groups with small244

Hessians eigenvalues (those generally distant from the decision boundary and highly accurate) will245

be less sensitive to the e↵ects of the pruning rate. Conversely, groups with large Hessians eigenvalues246

will be a↵ected by the pruning rate to a greater extent, typically resulting in larger excessive losses.247

These observations can further be appreciated empirically in Figures 4a (for accuracy) and 4c (for248

maximum group Hessian eigenvalues) on the UTKFace datasets for a variety of pruning rates.249

6 Mitigation solution and evaluation250

The previous sections highlighted the presence of two key factors playing a role in the observed251

model accuracy disparities due to pruning: the di↵erence in gradient norms, and the di↵erence in252

Hessians losses across groups. This section first shows how to leverage these findings to provide a253

simple, yet e↵ective solution to reduce the disparate impacts of pruning. Then, the section illustrates254

the benefits of this mitigating solution on a variety of tasks, datasets, and network architectures.255

6.1 Mitigation solution256

To achieve fairness, the aforementioned findings suggest to equalize the disparity associated with257

gradient norms kg`ak and Hessians �(H`
a) across di↵erent groups a 2 A. For this goal, the paper258

adopts a constrained empirical risk minimization approach:259

minimize
✓

J(✓; D) such that: kg`ak = kg
`
k, �(H`

a) = �(H`) 8a 2 A, (7)

where g
` = r✓J(✓; D) and H

` = r2
✓J(✓; D) refer to the gradients and Hessian associated with loss260

function `, respectively, and are computed using the whole dataset D. The approach (7) is a common261

strategy adopted in fair learning tasks, and the paper uses the Lagrangian Dual method of Fioretto262

et al. [9] which exploits Lagrangian duality to extend the loss function with trainable and weighted263

regularization terms that encapsulate constraints violations (see Appendix C for additional details).264

A shortcoming of this approach is, however, that requires computing the gradient norms and Hessian265

matrices of the group losses in each and every training iteration, rendering the process computationally266

unviable, especially for deep, overparametrized networks.267

To overcome this computational burden, we will use two observations made earlier in the paper.268

First, recall the strong relation between gradient norms for a group and their associated losses. This269

aspect was noted in Proposition 2. That is, when the losses across the groups are similar, the gradient270

norms across such groups will also tend to be similar. Next, Theorem 3 noted a positive correlation271

between model errors (and thus loss values) for a group and its associated Hessian eigenvalues. Thus,272

when the losses across the groups are similar, the group Hessians will also tend to be similar. This273

intuition is also complemented by the strong correlation between group Hessians and gradient norms274

reported in Section 5. Based on the above observations, the paper proposes a simpler version of the275

constrained minimizer (7) defined as276

minimize
✓

J(✓; D) such that: J(✓; Da) = J(✓; D) 8a 2 A, (8)

that substitutes the gradient norms and max eigenvalues of group Hessians equality constraints with277

proxy terms capturing the group J(✓; Da) and population J(✓; D) losses.278
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Figure 8: Accuracy and Fairness violations attained by all models on ResNet50, UTK-Face dataset
with ethnicity (5 classes) as group attribute (and labels) [left] and age (9 classes) [right].

Figure 9: Accuracy and Fairness violations attained by all models on VGG-19, CIFAR-10 dataset
(left) and SVHN (right) with 10 class labels also used as group attribute.

Figure 7: E↵ects of fairness constraints in balanc-
ing not only group accuracy (left) but also gradient
norms (middle) and group average distance to the
decision boundary (right).

The impact of such proxy terms in the fairness279

constrained program above can be appreciated,280

empirically, in Figure 7. The plots, that use the281

UTK-Face dataset, with Ethnicity as protected282

group, show an original unfair model (top) and283

a fair counterpart obtained through Program (8)284

(bottom). Notice how enforcing balance in the285

group losses also helps reducing and balancing286

the gradient norms and group’s average distance287

to the decision boundary. As a consequence,288

the resulting model fairness is dramatically en-289

hanced (bottom-left subplot).290

6.2 Assessment of the mitigation solution291

Datasets, models, and settings. This section292

analyzes the results obtained using the proposed mitigation solution with ResNet50 and VGG19 on293

the UTKFace dataset [29], CIFAR-10 [16], and SVHN [19] for various protected attributes. The294

experiments compare the following four models:295

• No Mitigation: it refers to the standard pruning approach which uses no fairness mitigation strategy.296

• Fair Bf Pruning: it applies the fairness mitigation process (Problem (8)) exclusively to the original297

large network, thus before pruning.298

• Fair Aft Pruning: it applies the mitigation exclusively to the pruned network, thus after pruning.299

• Fair Both: it applies the mitigation both to the original large network and to the pruned network.300

The experiments report the overall accuracy of resulting models as well as their fairness violations,301

defined here as the di↵erence between the maximal and minimal group accuracy. The reported metrics302

are the average of 10 repetitions. Additional details on datasets, architectures, hyper-parameters303

adopted, as well as additional and extended results are reported in Appendix C.304

E↵ects on accuracy. The section first focuses on analyzing the e↵ects of accuracy drop due to305

applying the proposed mitigation solution for fair pruning. Figure 8 compares the four models on the306

UTK-Face dataset using a ResNet50 architecture. The left subplots use ethnicity as protected group307

and class label, with |Y| = 5, while the right subplots use age as protected group and class label, with308

|Y| = 9. Notice that, as expected, all compared models present some drop in accuracy as the pruning309
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rates increase. However, notably, the accuracy drops of the models that apply the fair mitigation steps310

are comparable to (or even improved) those of the "No mitigation" model, which applies standard311

pruning.312

A similar trend can be seen in Figure 9 that reports results on CIFAR (left) and SVHN (right). Both313

use the ten class labels as protected attributes. These results clearly illustrate the ability of the314

mitigating solution to preserve highly accurate models.315

E↵ects on fairness. The section next illustrates the ability of the proposed solution to achieve fair316

pruned models. The second and fourth subplots presented in Figures 8 and 9 illustrate the fairness317

violations obtained by the four models analyzed on di↵erent datasets and settings. The paper makes318

the following observations: First, all the plots exhibit a consistent trend in that the mitigation solution319

produces models which improve the fairness of the baseline, "No mitigation" model. Observe that, as320

already illustrated in Figure 7, the fair models tend to equalize the gradient norms and group Hessians321

components (and thus the distance to the decision boundary across groups). Thus, the resulting322

pruned models also attain better fairness, when compared to their standard counterparts.323

Next, notice that "Fair Aft Pruning" often achieves better fairness violations than "Fair Bf Pruning",324

especially at high pruning regimes. This is because the former has the advantage to apply the325

mitigation solution directly to the pruned model to ensure that the resulting model has low di↵erences326

in gradient norms and group Hessians. The presentation also illustrates the application of the327

mitigation strategies both before and after pruning (Fair Both) which shows once again the significance328

of applying the mitigation solution over the pruned network.329

Finally, it is notable that "Fair Aft Pruning" achieves good reductions in fairness violation. Indeed,330

pre-trained large (non-pruned) fair models may not be available and the ability to retrain these large331

models prior to pruning may be hindered by their size and complexity.332

7 Discussion and limitations333

This section discusses three key messages found in this study. First, we notice that pruning a↵ecting334

model separability and distance to the decision boundary is related to concepts also explored in robust335

machine learning [11, 21]. Not surprisingly, some recent literature in network pruning has empirically336

observed that pruning may have a negative impact on adversarial robustness [12]. These observations337

raise questions about the connection between pruning, robustness, and fairness, which we believe is338

an important direction to further investigate.339

Next, although the solution proposed in Problem (8) allows it to be adopted in large models, the size340

of modern ML models (together with the amount of hyperparameters searches) may hinder retraining341

such original massive models from incorporating fairness constraints. Notably, however, the proposed342

mitigation solution can be used as a post-processing step to be applied during the pruning operation343

directly. The previous section shows that the proposed method delivers desirable performance in344

terms of both accuracy and fairness.345

Finally, we notice that the results analyzed in this paper pertain to losses that are twice di↵erentiable.346

Lifting such an assumption will be an interesting and challenging future research avenue.347

8 Conclusion348

This work observed that pruning, while e↵ective in compressing large models with minimal loss of349

accuracy, can result in substantial disparate accuracy impacts. The paper examined the factors causing350

such disparities both theoretically and empirically showing that: (1) disparity in gradient norms351

across groups and (2) disparity in Hessian matrices associated with the loss functions computed using352

a groups’ data are two key factors responsible for such disparities to arise. By recognizing these353

factors, the paper also developed a simple yet e↵ective retraining technique that largely mitigates the354

disparate impacts caused by pruning.355

As reduced versions of large, overparametrized models become increasingly adopted in embedded356

systems to facilitate autonomous decisions, we believe that this work makes an important step toward357

understanding and mitigating the sources of disparate impacts observed in compressed learning358

models.359
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