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Abstract: We introduce the first work to explore web-scale diffusion models for1

robotics. DALL-E-Bot enables a robot to rearrange objects in a scene, by first in-2

ferring a text description of those objects, then generating an image representing a3

natural, human-like arrangement of those objects, and finally physically arranging4

the objects according to that image. Crucially, we show this is possible zero-shot5

using only the pre-trained DALL-E model, without needing any further data col-6

lection or training. Encouraging real-world results with human studies show that7

this is an exciting direction for using these web-scale pre-trained models in robot8

learning algorithms. We also propose a list of recommendations to the text-to-9

image community, to align further development of these models with applications10

to robotics. Videos are available at: sites.google.com/view/dallebot11

Keywords: Diffusion Models, Image Generation, Object Rearrangement12
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Figure 1: The robot prompts DALL-E with the list of objects it detects, which generates an image
with a human-like arrangement of those objects. The robot then recreates that arrangement in reality.

1 Introduction13

Diffusion models such as DALL-E [1] have recently shown an astonishing ability to generate high-14

quality images from text prompts, by training on hundreds of millions of captioned images from the15

web [2, 3, 4]. Previous breakthroughs in web-scale foundation models have been applied success-16

fully to robotics [5, 6, 7, 8, 9]. In this work, we explore the following question: How can image17

diffusion models such as DALL-E, pre-trained on web-scale data, be used for robotics?18

Since these models can generate realistic images of everyday scenes such as kitchens and offices,19

our insight is that they are proficient at imagining arrangements of everyday objects which are20

human-like: semantically correct, aesthetically pleasing, physically plausible, and convenient to21

use. Therefore, we consider that they could be used to generate goal images for general object re-22

arrangement tasks [10], such as setting a table, loading a dishwasher, tidying a room, stacking a23

shelf, and assembling furniture. Most prior methods for predicting the goal state (i.e. a goal pose24

for each object) require manually collecting a dataset of examples for how a scene should be ar-25

ranged [11, 12, 13, 14, 15, 16, 17, 18]. Our proposed framework predicts how to arrange a given26

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.

https://sites.google.com/view/dallebot


scene without requiring this data collection, which restricts most existing methods to a specific set27

of objects and scenes. Further analysis of prior work can be found in Appendix A.28

In this paper, we propose DALL-E-Bot, the first method to use web-scale image diffusion models29

for robotics. We design a framework which takes an image of the initial, unorganised scene, uses30

DALL-E to imagine a human-like goal image for that scene, and creates the corresponding object31

arrangement with a real robot (Fig. 1). Experiments show that this can be applied to several every-32

day rearrangement tasks to create arrangements which are satisfactory to humans. Additionally, we33

find that DALL-E’s inpainting feature can precisely predict the poses of missing objects in a scene,34

conditioned on the pre-placed objects. Furthermore, we present a discussion of the method’s limita-35

tions in Appendix J, and in Appendix K we propose ideas for future web-scale diffusion models to36

maximise their usefulness for robotics. Videos are available at: sites.google.com/view/dallebot37

Using web-scale image diffusion models for predicting rearrangement goal states has several38

strengths. First, this is a zero-shot transfer of the DALL-E model to the object rearrangement task,39

because it uses the publicly available DALL-E without any additional data collection or training.40

Second, this is an open-set method: it is not restricted to a specific set of objects, because of the41

web-scale training of DALL-E. Third, this pipeline is autonomous: no human effort is required42

from the user, because there is no need for a human-created goal image or language guidance.43

2 Method44

We address the problem of predicting the goal state of a rearrangement task, i.e. a goal pose for each45

object, such that the objects are arranged in a natural and human-like way. The method must predict46

this goal state from a single RGB image II of the initial scene. We achieve this through a modular47

approach shown in Fig. 2. At the heart of our method is a web-scale image diffusion model DALL-E48

2 [1], which generates high-quality samples of goal images IG with human-like object arrangements49

using a language description of the scene y extracted from the initial observation.50

“A fork, a knife, a
plate, and a spoon,

top-down”
a fork with a black handle on a wooden table
a knife on top of a wooden table
an empty white plate on a wooden table
a spoon with a black handle on a wooden table
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Figure 2: An overview of our method’s pipeline.

First, we need to convert an initial RGB observation into a more relevant object-level representation51

to reason about the objects in the scene and their arrangement. We do so by constructing a represen-52

tation that consists of text captions of crops of individual objects ci in the scene together with their53

segmentation masks Mi and visual-semantic feature vector vi acquired using the CLIP model [19].54

We use text captions ci to automatically construct a text prompt containing a list of the objects in55

the scene. We also append the term “top-down” so that DALL-E generates images from the same56

perspective as the initial image captured by a camera mounted on a robot’s wrist pointing downwards57

better. In addition, we generate an image mask IM that prevents DALL-E from altering the pixels58

corresponding to the contours of stationary objects (i.e. an object that the robot is not allowed to59

move) and tabletop edges to avoid objects being generated on the edge of the image.60
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We generate several images with the goal arrangement by sampling a conditional distribution61

pθ(IG|y, IM ) represented by a web-scale text-to-image diffusion model DALL-E 2 [1]. We con-62

vert generated images into object-level representations and filter out the ones that do not contain the63

same number of objects as the initial scene. From the remaining images, we select the one that min-64

imises the cost of the linear sum assignment problem (Hungarian matching) between the object-level65

visual-semantic feature vectors in the initial and generated images.66

Using Iterative Closest Point (ICP) [20], we then register corresponding segmentation masks to67

obtain transformations that need to be applied to the objects to achieve the goal arrangement. To68

account for possible size differences for the same object in initial and generated images, we move69

objects closer together or further apart, but do not allow them to collide. Finally, we convert these70

transformations from image to Cartesian space using a depth camera observation and deploy a real71

Franka Emika Panda robot equipped with a suction gripper to arrange the objects. More detailed72

explanations of each component in our method can be found in Appendices B-E.73

3 Experiments74

3.1 Zero-Shot Autonomous Rearrangement75

In our experiments, we evaluate the ability of our method to create human-like arrangements using76

both subjective (Section 3.1) and objective (Section 3.2) metrics. First, we explore the following77

question: can DALL-E-Bot arrange a set of objects in a human-preferred way?78
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Figure 3: Examples of scenes arranged by the robot via different methods. Columns for the methods
that use DALL-E include the generated image (left) and an image of the final arrangement (right).

We evaluate on 3 everyday tabletop rearrangement tasks: dining, office, and fruit basket (Fig. 3).79

The robot should arrange the objects in a human-like way while considering the poses of stationary80

objects (the fruit basket and the iPad), which the robot is not allowed to move. Further setup details81

are in Appendix F. Since DALL-E-Bot is the first method to predict precise goal states for rearrange-82

ment zero-shot, we need to design baselines which are also zero-shot for a fair comparison. We use83

heuristic baselines and ablation variants of DALL-E-Bot, detailed in Appendix G.84

Method Dining Scene Office Scene Fruit Scene Mean
Rand-No-Coll 2.21±2.24 3.42±2.47 3.26±2.00 2.96
Geometric 4.14±1.80 3.47±2.23 2.85±1.62 3.49
Abl-Mask-RCNN 3.99±2.60 7.53±2.04 5.86±3.40 5.79
Abl-No-VG 7.45±1.81 7.13±1.99 5.48±3.56 6.69
DALL-E-Bot 7.14±2.13 7.71±2.01 9.55±0.90 8.13

Table 1: User ratings for the arrangements made by each
method. Each figure represents the mean and standard de-
viation across all users and scene initialisations.

As we aim to create human-preferred85

arrangements, we evaluated each86

method by showing human partici-87

pants images of the final scene created88

by the robot. Participants were asked:89

“If the robot made this arrangement90

for you, how happy would you be?”,91

with ratings on a Likert Scale from92

1 (very unhappy) to 10 (very happy).93

We recruited 17 participants with ages94
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ranging from 20 to 71 (ten male, six female, and one preferred not to say). Each rated the results of95

5 methods on 5 random initialisations of 3 scenes, for a total of 1275 ratings. Results are in Table 1.96

DALL-E-Bot beats the heuristic baselines, showing that people value semantic correctness over97

simple geometric alignment. The ablation results justify our design decisions to use object-level98

captioning and visual grounding. For a detailed analysis, please see Appendix I.99

3.2 Placing Missing Objects with Inpainting100

In the next experiment, we use objective metrics to answer the question: can DALL-E-Bot precisely101

complete an arrangement which was partially made by a human? For this, we ask DALL-E-Bot102

to find a suitable pose for an object that has been masked out from a user-made scene. We use the103

dining scene because it has the most rigid structure for semantic correctness and thus is most suitable104

for quantitative, objective evaluation. To create these scenes initially, we recruited ten participants105

(both left and right-handed) and asked them the following: “Imagine you are sitting down here for106

dinner. Can you please arrange these objects so that you are happy with the arrangement?”. As107

there can be multiple suitable poses for any single object in the scene, we asked the users to provide108

any alternative poses of each object individually that they would still be happy with while keeping109

other objects fixed. We show example arrangements in Appendix H.110

Fork Plate Spoon Knife
Method cm / deg cm / deg cm / deg cm / deg
DALL-E-Bot 4.95 / 1.26 1.28 / - 2.13 / 2.72 2.1 / 3.27
Geometric 15.59 / 40.57 2.29 / - 23.83 / 86.11 11.58 / 1.47
Rand-No-Coll 25.85 / 70.32 10.78 / - 27.47 / 42.56 23.51 / 99.32

Table 2: Position and orientation errors between pre-
dicted and user-made object poses. Median is pre-
sented across all users.

We start with the image of the arrangement111

made by a user, and mask out everything112

except the fixed objects. The method must113

then predict the pose of the missing ob-114

ject. DALL-E-Bot does this by inpainting115

the missing object somewhere in the image.116

For a given user, the predicted pose for the117

missing object is compared against the ac-118

tual pose in their arrangement. This is done119

by aligning two segmentation masks of the120

missing object, one from the actual scene and one at a predicted pose. Since this is for two poses121

of exactly the same object instance, we find the alignment is highly accurate and can be used to122

estimate the error between the actual and predicted pose. From this transformation, we take the ori-123

entation and distance errors projected into the workspace as our metrics. This is repeated for every124

object as the missing object, and across all the users. We use two zero-shot heuristic methods as125

baselines, detailed in Appendix G. For each method, we compare the predicted pose against each126

of the acceptable poses provided by the user, and report the position and orientation errors from the127

closest acceptable pose in Table 2. DALL-E-Bot outperforms the heuristic baselines, and is able to128

accurately place the missing objects with a small error across the different users. This implies that it129

is successfully conditioning on the placement of the other objects in the scene using inpainting, and130

that the human and robot can create an arrangement collaboratively.131

3.3 Conclusions132

In this paper, we show for the first time that web-scale diffusion models like DALL-E have signifi-133

cant potential as “imagination engines” for robots, acting like an aesthetic prior for how to arrange134

objects in a human-like way. This allows for zero-shot, autonomous rearrangement, using DALL-E135

out-of-the-box, without requiring collecting datasets of example arrangements for specific scenes,136

and without any additional training. In other words, our system gives web-scale diffusion models137

an embodiment to realise the scenes that they imagine. Studies with human users showed that they138

are happy with the created arrangements for everyday rearrangement tasks, and that the inpainting139

feature of diffusion models is useful for conditioning on pre-placed objects. Web-scale diffusion140

models are a recent and active research frontier, and so we have also provided recommendations for141

further aligning these models with robotics. We believe that this is an exciting direction for the future142

of robot learning, as pre-trained diffusion models continue to impress and inspire complementary143

research communities.144
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A Related Work258

A.1 Predicting Goal Arrangements259

We now highlight prior approaches to predicting goal poses for rearrangement tasks. Some methods260

view the prediction of goal poses as a classification problem, by choosing from a set of discrete261

options for an object’s placement. For house-scale rearrangement, a pre-trained language model262

can be used to predict goal receptacles such as tables [21], and out-of-place objects can be detected263

automatically [16]. At a room level, the correct drawer or shelf can be classified [22], taking pref-264

erences into account [23]. Lower-level prediction from a dense set of goal poses can be achieved265

with a graph neural network [24] or a preference-aware transformer [13]. Our framework generates266

high-resolution images of how objects should be placed, thus not requiring a set of discrete options267

to be pre-defined, and providing more precise guidance than with language-based methods.268

Learning to predict continuous object poses can be done using example arrangements by encoding269

spatial preferences with a graph VAE [12], or using an autoregressive language-conditioned trans-270

former [14], or by learning gradient fields [25]. Other methods use full demonstrations [5, 15], or271

leverage priors such as human pose context [11]. When the goal image is given, rearrangement is272

possible even with unknown objects [26]. However, unlike these works, our proposed framework273

does not require collecting and training on a dataset of rearrangement examples, which often re-274

stricts these methods to a specific set of objects and scenes. It also does not require a human user275

to complete the rearrangement task themselves in order to provide a goal image. Instead, exploiting276

existing web-scale image diffusion models enables zero-shot, autonomous rearrangement.277

A.2 Web-Scale Diffusion Models278

Generating images with web-scale diffusion models such as DALL-E is at the heart of our method.279

Diffusion models [27] are trained to reverse a single step of added noise to a data sample. By280

starting from random noise and iteratively running many of these small, learned denoising steps,281

this can generate a sample from the learned distribution of data. These models have been used to282

generate images [28, 29, 30], text-conditioned images [1, 2, 3, 4], robot trajectories [31], and audio283

waves [32]. We use DALL-E 2 [1] in this work, although our framework could be used with other284

text-to-image models.285

B Object-Level Representation286

To reason about the poses of individual objects in the observed scene, we need to convert the initial287

RGB observation into a more functional, object-level representation. We use the Mask R-CNN288

model [33] from the Detectron2 library [34] to detect objects in an image and generate segmentation289

masks {Mi}ni . This model was pre-trained on the LVIS dataset [35], which has 1200 object classes,290

being more than sufficient for many rearrangement tasks. The Mask R-CNN model provides us with291

object bounding boxes, their segmentation masks and class labels. However, while bounding box292

and segmentation mask predictions are usually high-quality (regardless of the predicted class), and293

can be used for pose estimation (described in Section E), the assigned class labels are often incorrect294

due to the large number of classes in the training dataset.295

As we are using text labels of objects in the scene (described in Section C) to construct a prompt296

for an image diffusion model, it is crucial for these labels to be accurate and descriptive. Instead of297

directly using predicted object class labels, we pass RGB crops of each object individually through298

the OFA image-to-text captioning model [36] and acquire a text description of the objects in the299

initial scene observation {ci}ni . Generally, this approach allows us to more accurately predict ob-300

ject class labels and go beyond the objects in the training distribution and even obtain their visual301

characteristics such as colour, material and shape.302

Finally, we also pass each object crop through a CLIP visual model [19], giving each object a303

512-dimensional visual-semantic feature vector vi. These features will be used later for matching304
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objects between the initial scene image and the generated image. Thus we have converted an initial305

scene RGB observation II into an object-level representation of the scene {Mi, ci, vi}ni , with a306

segmentation mask, a text caption, and a semantic feature vector for each object.307

C Goal Image Generation308

Our method relies on the ability to generate images of natural and human-friendly arrangements309

given their language descriptions. To this end, we heavily utilise the recent advances in text-to-310

image generation using web-scale diffusion models. Specifically, we use the DALL-E 2 [1] model311

from OpenAI. It was trained on a vast number of image-caption pairs from the Web, and represents312

the conditional distribution pθ(IG|y, IM ). Here, IG is an image generated by the model, y is a text313

prompt, and IM is an image mask that can be used to prevent the model from changing the values of314

certain pixels in the image. A large portion of distribution pθ represents images with scenes arranged315

by humans in a friendly and usable way. Therefore, by sampling this distribution, we can generate316

images representing our desired scenes and realise the object arrangements by matching the object317

poses in them. Additionally, the ability to condition this distribution on image mask IM allows us318

to tackle scenarios where not all objects in the scene need to or can be moved by the robot.319

We first need to construct a text prompt y describing the desired scene. To this end, we use object320

captions from our object-level representation. Although full captions, including their visual charac-321

teristics, could be used to generate images with identical objects in the scene, in this work, we only322

use the nouns describing the object’s class and leave including visual characteristics for future work.323

We extract the class of each object from the caption of its object crop, i.e. we extract “apple” from “a324

red apple on a wooden table”. We do this by passing the object captions through the Part-of-Speech325

tagging model [37] from the Flair NLP library [38], which tags each word as a noun, a verb, etc.326

From this list of classes, we construct a prompt that makes minimal assumptions about the scene327

to allow DALL-E to arrange it in the most natural way. This work deals with tabletop scenes with328

initial observations captured by a camera mounted on a robot’s wrist pointing downwards. There-329

fore, we added a “top-down” phrase to the prompt to better align the initial and generated images.330

We have also found that it reduces the frequency of generated images with unusual, artistic camera331

perspectives. An example prompt we use would be “A fork, a knife, a plate, and a spoon, top-down”.332

We use the ability to condition distribution pθ on image masks in three ways. First, if there are333

objects in the scene that a robot is not allowed to move, we add their contours to IM . This prevents334

DALL-E from generating these objects in different poses while still allowing for other objects to be335

placed on top or in them (e.g. a basket can not be moved, but other objects can be placed inside it).336

Secondly, we add a mask of the tabletop’s edges in our scene to IM to visually ground the generated337

images. This prevents objects from being placed on the edge of the generated image and incentivises338

DALL-E to create objects of appropriate sizes. Finally, we subtract enlarged segmentation masks of339

all the movable objects from IM to avoid any shadows. The latter is essential, as if DALL-E sees340

any shadows of objects in their original poses, it will generate objects in the same poses to match341

the shadows, hindering the method’s performance.342

Using the prompt y and the conditional mask IM , we sample a batch of images from the conditional343

distribution pθ(IG|y, IM ), represented by the text-to-image model. We do so using an automated344

script and OpenAI’s web API.345

D Image Selection & Object Matching346

In the batch of generated images, not all will be desirable for the rearrangement task: some may have347

artefacts which make object detection difficult, others may contain the wrong number of objects, etc.348

We need to select the generated image IG which best matches the real-world initial image II .349

For each generated image, we obtain segmentation masks and a CLIP semantic feature vector for350

each object using the same procedure as in Section B. We filter out generated images with the wrong351

number of objects, compared to the initial scene. Then, we match the objects in the generated352
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image to the objects in the initial image. This is non-trivial since the generated objects are different353

instances to the real objects, with a very different appearance. Inspired by [39], a similarity score354

between any two objects (one from II , and one from IG) is computed using the cosine similarity355

between their CLIP feature vectors. Since greedy matching is not guaranteed to yield optimal results356

in general, we use the Hungarian Matching algorithm to compute an assignment of each object in357

the live image to an object in the generated image, such that the total similarity score is maximised.358

Then we select the generated image IG which has the best overall score with the initial image II .359

This image contains the most similar set of objects to the real scene, and so that arrangement is most360

likely to transfer well to the real objects.361

E Object Pose Estimation362

For each object in the initial image, we now know its segmentation mask in the initial image and363

the corresponding segmentation mask in the generated image. By aligning the segmentation masks,364

we can estimate a transformation from the initial pose (in the initial image) to the goal pose (in the365

generated image). We rescale the initial segmentation masks to match the corresponding ones in the366

generated image and use the Iterative Closest Point algorithm [20] to align the two masks, taking367

each pixel to be a point. This gives us a 3-DoF (x, y, θ) transform in pixel space which would move368

an object from its pose in the initial image to its goal pose in the generated image. The scale of369

the objects in the generated image can be significantly different, leading to the found arrangement370

resulting in collisions or being un-naturally spaced out. Therefore, we adjust the poses of the objects371

in the scene based on the size difference of objects in the initial and generated images. We do so by372

moving the objects closer or further from the object with the minimum cumulative distance to all373

the other objects while also pushing objects out of any undesired collisions.374

Next, we use the depth camera to project the pixel-space poses into 3D space on the tabletop, obtain-375

ing a transformation for each object which moves it from the initial pose to the goal pose. Finally,376

we use the real robot to realise these transformations using a suction gripper. It moves the gripper377

to the object using inverse kinematics. The object is grasped with the suction gripper using a grasp-378

ing primitive. The robot rotates the object while it is being transported to the goal pose, also using379

inverse kinematics and motion planning. The robot then places the object. It also reasons about380

the execution of the whole task and moves objects that would cause collisions into intermediate381

placement locations if needed before moving them to their predicted goal poses.382

F Evaluation Setup383

The dining scene involves four objects (a knife, a fork, a spoon, and a plate), and a robot should384

be able to arrange them so that a user would be happy seeing said arrangement when sitting down385

for a meal. The office scene includes a stationary object (a display) and three movable objects (a386

keyboard, a mouse and a mug). The arrangement of movable objects should be natural and useable387

with respect to the stationary object that a robot cannot move. Finally, the fruit basket scene388

contains two apples and an orange, as well as a stationary basket. This scene is challenging because it389

requires reasoning about the spatial relations between the fruits and the basket, and because the fruit390

in the generated images is often densely packed partially occluding the basket. The rearrangements391

are executed on a Franka Emika robot equipped with a compliant suction gripper. We record the392

outcome as an RGB image of a tabletop captured by RealSense D435i mounted on the wrist of the393

robot.394

G Baselines395

G.1 Zero-Shot Autonomous Rearrangement396

Since DALL-E-Bot is the first method to predict arrangements zero-shot, we devised additional397

training-free methods as baselines, which can create arrangements that are natural to humans in398
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our evaluation scenes. The Rand-No-Coll arrangement strategy arbitrarily places objects in the399

environment while ensuring they do not overlap. The Geometric baseline puts all the objects in a400

horizontal line such that they are not colliding, and the longer side of the object-oriented bounding401

box is aligned with the y-axis. In addition, we compare our method DALL-E-Bot against two of402

its ablation variants, Abl-Mask-RCNN and Abl-No-VG, to showcase the importance of accurate403

text description of objects in the scene and visual grounding of DALL-E predictions (described404

in Section C). The former uses labels predicted by Mask R-CNN to construct the text prompt for405

DALL-E, while the latter does not use the edge crops around the table.406

G.2 Placing Missing Objects with Inpainting407

Hand-designed baselines (Rand-No-Coll and Geometric) aim to place the missing object in a geo-408

metrically pleasing way based on the poses of other objects in the scene.409

The Rand-No-Coll approach places the missing object arbitrarily in the workspace, ensuring it does410

not collide with the fixed objects. The Geometric baseline places the object on a line defined by411

centroids of segmentation maps of two fixed objects while also matching the alignment of the closest412

object.413

The distribution of acceptable poses is multimodal, which can cause significant errors if a method414

finds a mode not selected by the user. Therefore, we present the median across all users, which is less415

dominated by outliers than the mean, so it is a better representation of the aggregate performance.416

H User-Provided Arrangements for Inpainting417

Figure 4: Example arrangements made by users for the inpainting experiment.

In the inpainting experiment, we ask users to create example arrangements so that methods can418

predict the poses of masked-out objects. In Fig. 4, we visualise several of the example arrangements419

provided by users. Even for a scene with as much semantic structure as a dining table, there is still420

significant variation in how users arrange this scene, due to their national cultural background or421

personal preferences. This shows that the methods benefit from conditioning on the placement of422

the pre-placed objects in order to place the missing object correctly. It also justifies our evaluation423

methodology for handling this multi-modal distribution, where we ask the users to provide several424

example placements for an object if they consider them all acceptable, and methods should predict425

any of these to achieve a low error.426

I Experimental Results Discussion427

I.1 Zero-Shot Autonomous Rearrangement428

Looking at the user studies results presented in Table 1 in the main paper, we can see that DALL-429

E-Bot receives higher user scores, showing that it can create satisfactory arrangements even without430

11



task-specific training. It beats the heuristic baselines, showing that users do care about semantic431

correctness for arranging scenes beyond just geometric alignment, and justifying the use of web-432

scale learning for capturing these subtle semantic arrangement rules. This is especially evident433

in the fruit scene, where DALL-E recognises the semantic connections between fruit and a fruit434

basket. Since it has seen many paintings and photographs of fruit in fruit baskets, it successfully435

predicts that this is a natural goal state. The Abl-Mask-RCNN [33] ablation baseline falls short on436

the dining scene, since it often predicts the wrong classes for the objects, e.g. frisbee instead of437

plate. This makes the prompt to DALL-E unusual, resulting in unnatural generated arrangements.438

This justifies our use of a dedicated captioning model instead of Mask R-CNN classes. DALL-E-439

Bot also outperforms the Abl-No-VG ablation baseline on some scenes, showing that there is some440

value in including the edges of the scene in the inpainting mask, which makes DALL-E less likely441

to generate objects only partially in the image. Qualitative results in Fig. 3 in the main paper also442

show that the realised arrangements for DALL-E-Bot closely match the diffusion-generated images443

for most objects, despite the differences between object instances.444

I.2 Quantitative Evaluation445

As we can see from Table 2 in the main paper, considered baselines struggle with finding the correct446

placements of the missing object. This shows that it is challenging to design a method for this task447

without overfitting to one specific object. On the other hand, DALL-E-Bot can consistently infer and448

estimate the preferred pose of the missing object by only observing the fixed objects. Note that each449

component in the pipeline will contribute to the end-to-end error, e.g. due to imperfect segmentation450

or pose estimation. Since our method is modular, it is easy to swap in another component, e.g. a more451

powerful pose estimator if object models are available, and decrease the error in this way. Challenges452

like instance segmentation are independent and active areas of research: as new state-of-the-art453

models are developed, they can easily be integrated into our method to improve its performance.454

J Limitations & Future Work455

Here, we discuss the limitations of this method to help researchers decide whether it is well-suited456

for their use-case, and propose ideas for future work.457

Personal preferences. If objects placed by the user are visible in the inpainting mask, DALL-E may458

implicitly condition images on inferred preferences (e.g. left/right-handedness). However, when no459

objects are pre-placed by the user, then the arrangement made by the robot may not align with the460

user’s preferences. Future work could extend to conditioning on preferences inferred from previous461

scenes arranged by the user.462

Top-down scenes. Our experiments focus on 3-DoF top-down scenes. This is sufficient for many463

common rearrangement tasks, such as setting restaurant tables or tidying office desks. Future work464

can extend this to 6-DoF poses, in order to e.g. stack shelves. Since the framework is modular, a465

6-DoF pose estimator can easily be swapped in. It may be challenging to fit object models to the466

generated images.467

Object-centric framework. Our method reasons about pose transformations to solve everyday468

rearrangement tasks. Thus, as individual components (e.g. segmentation, pose estimation) improve,469

overall performance will also improve. However, some tasks, such as folding deformable fabrics or470

sweeping small particles, are not within this method’s scope.471

Beyond rearrangement. This works focuses on object rearrangement, which covers many useful472

everyday tasks. In principle, this framework can be extended to tasks beyond object rearrangement473

by learning robot policies which reach the generated goal images.474

Overlap between objects. Currently, our method assumes that movable objects cannot overlap, so475

the fork cannot go on top of the plate. To handle this, the robot would need to use task planning to476

stack objects in the correct order.477
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Robustness of cross-instance object alignment. To estimate each object’s transformation from478

the initial image to the generated image, we align the two binary segmentation masks with ICP.479

However, this is difficult for symmetric objects such as knives or keyboards, which can be aligned480

with 180-degree error. This can be alleviated by aligning semantic feature maps instead of binary481

segmentation masks.482

Diffusion model accessibility. We use the public-facing interface for DALL-E from OpenAI. Al-483

though this is a paid API, there are already diffusion models such as Stable Diffusion [4] which484

are freely available and can be used for inference in seconds on a consumer-grade GPU. As more485

diffusion models become widely available, it will be feasible for any research lab or company to486

apply these diffusion models in their robotics setup.487

Prompt engineering. Adding terms such as “neat, precise, ordered, geometric” for the dining scene488

improved the apparent neatness of the generated image. As found in other works [40], there is489

significant scope to explore this further.490

Language-conditioned generation. One exciting direction for future work is generating arrange-491

ments based on language instructions. This may prove challenging, since prior work [41] has shown492

that DALL-E finds it difficult to bind textual relations to objects reliably. However, this may be over-493

come with future diffusion models. Note also that our method does not rely on specifying relations494

through text, so this does not present a limitation of the current method, but an important issue to495

consider for future work.496

K Recommendations to the Text-To-Image Community497

As this is the first work to explore web-scale diffusion models for robotics, we now provide our498

findings on the strengths and limitations of existing diffusion models for robotics, with the aim of499

guiding the text-to-image community when targetting applications to robotics.500

Everyday scenes in training datasets. We found that Stable Diffusion [4] trained on LAION-501

Aesthetics is proficient at generating aesthetically pleasing images, but DALL-E is better suited for502

robotic applications, because the training dataset includes “ordinary” images. Taking this further,503

training only on everyday scenes could be important for robotics.504

Batch sampling and rejection. Many of the generated images are not suitable as goal images (e.g.505

wrong number of objects). We found that the best images came from sampling larger batches and506

designing an algorithm to reject invalid samples. Diffusion model systems and tools which allow507

for automated rejection based on the text prompt could be useful.508

Visual conditioning. Rather than just conditioning on language descriptions of objects to be gener-509

ated, it would be useful to condition on image features of the real objects, but still allow the diffusion510

model to arrange them differently. This would help with matching between the initial and generated511

images. Textual inversion [42] looks promising for making the generated objects better match the512

real instances.513

Outpainting. We found that objects are frequently generated at the image edge and only partially in514

view, making pose estimation more difficult. Outpainting, available in some text-to-image models515

including DALL-E, can help with this.516

Guidance scale. Some interfaces (e.g. Stable Diffusion [4]) allow a trade-off between image realism517

and text prompt adherence. This is useful for robotics, since generating images that adhere to the518

text prompt is much more important than generating attractive or realistic images.519
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