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Abstract

Given a natural language instruction, and an input and an output scene, our goal1

is to train a neuro-symbolic model which can output a manipulation program that2

can be executed by the robot on the input scene resulting in the desired output3

scene. Prior approaches for this task possess one of the following limitations: (i)4

rely on hand-coded symbols for concepts limiting generalization beyond those5

seen during training [1] (ii) infer action sequences from instructions but require6

dense sub-goal supervision [2] or (iii) lack semantics required for deeper object-7

centric reasoning inherent in interpreting complex instructions [3]. In contrast,8

our approach is neuro-symbolic and can handle linguistic as well as perceptual9

variations, is end-to-end differentiable requiring no intermediate supervision, and10

makes use of symbolic reasoning constructs which operate on a latent neural object-11

centric representation, allowing for deeper reasoning over the input scene. Our12

experiments on a simulated environment with a 7-DOF manipulator, consisting13

of instructions involving reasoning and manipulation over longer time horizons,14

and scenes richer than those seen during training, demonstrate that our model15

significantly outperforms existing baselines, particularly in generalization settings.16

1 Introduction17

We address the problem of learning to translate high level language instructions into executable18

symbolic programs grounded in the robot’s state and action space. We focus on multi-step manipu-19

lation tasks that involve object interactions such as stacking, and assembling objects referred to by20

their attributes and spatial relations. We assume the presence of natural supervision from a human21

teacher in the form of input and output scenes, along with linguistic description of a high-level22

manipulation task. The goal is to train a task planning model that learns action representations that23

can be composed to achieve the task. The learning problem is hard since (1) object attributes and24

actions have to be parsed from the underlying sentence (2) object references need to be grounded25

given the image and (3) the effect of executing the specified actions has to be deciphered in the image,26

requiring complex natural language as well as well image level reasoning. Further, the model needs27

to be trained end-to-end, learning representation for any intermediate sub-goals to be executed to28

achieve the task.29

Prior efforts for this task can be broadly categorized as (i) Traditional approaches which learn a30

mapping between phrases in the natural language to symbols representing robot state and actions in31

a pre-annotated dataset[1], [4]–[9]; they lack the flexibility to learn the semantics of concepts and32

actions on their own, an important aspect required for generalizability (ii) Approaches that model an33

instruction as a sequence of action labels to be executed, without any deeper semantics, and requiring34

intermediate supervision for sub-goals, which may not be always be available [2], [10]–[16] (iii)35
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Figure 1: Model architecture. The Visual Extractor forms dense object representations from the scene image
using pre-trained object detector and feature extractor. The Language Reasoner auto-regressively induces a
symbolic program from the instruction that represents rich symbolic reasoning over spatial and action constructs
inherent in the instruction. The Visual Reasoner determines which objects are affected by actions in the plan
using symbolic and spatial reasoning. The Action Simulator determines changes in the world state caused by an
action. The model is trained end-to-end without any intermediate sub-goal supervision. The Language Reasoner
is trained using REINFORCE and the other modules are optimized using back-prop.

Recent approaches which learn the task end-to-end, but have limited reasoning capability both at the36

level of instruction parsing, and their ability to learn varied action semantics [3], [17]–[23].37

In response, we introduce a neuro-symbolic approach for jointly learning grounded concepts that38

can be composed in manipulation programs that explain how the world scene is likely to affected39

by the input instruction. Our approach makes use of a Domain Specific Language (DSL) which40

specifies various concepts whose semantics is learned by the model, in an end-to-end fashion. We41

build on the concept learning framework by [24], and introduce a model for grounding of concepts in42

a natural language instruction extracted via a hierarchical parser [25], to those present in the image,43

and translate them into robot manipulation actions specified as part of an executable programs; a44

representation that incorporates action composition as well as rich symbolic reasoning. The model45

outputs a program prescribing a sequence of grounded actions, which when executed by the robot,46

results in the desired world state. The contributions of this work are: (i) A novel neuro-symbolic47

model that learns to perform complex object manipulation tasks requiring reasoning over scenes for a48

natural language instruction, given initial and final world scenes. (ii) A demonstration of how dense49

representations for robot manipulation actions can be acquired using only the initial and final world50

states (scenes) as supervision without the need for any intermediate supervision. (iii) Evaluation51

in instruction, demonstrating robust generalization to novel settings. The data set and code will be52

publicly released with the final version.53

2 Problem Formulation54

The robot perceives the world state comprising a set of rigid objects placed on a table via a depth55

sensor that outputs a depth image S ∈ RH×W×C , where H,W,C respectively denote the height,56

width and the number of channels (including depth) of the imaging sensor. The workspace is co-57

habited by a human partner who provides language instructions to the robot to perform assembly58

tasks.The robot’s goal is to interpret the human’s instruction Λ in the context of the initial world59

state SI and determine a sequence of low-level motions that result in the final world state SF60

conforming to the human’s intention. Following [26], [27], planning a complex task is factorized61

into (i) high-level task planning to determine a sequence of sub-goals, and (ii) the generation of62

low-level motions to attain each sub-goal. Formally, a semantic model for a manipulation task63

denoted as ManipulationProgram(.) takes the initial scene SI and the instruction Λ as input and64

determines a sequence of sub-goals as (g0, g1, . . . , gn) = ManipulationProgram(SI ,Λ). Each65

sub-goal gi aggregates the knowledge of the object, oi, to be manipulated and its target Cartesian66
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SE(3) pose pi. This is provided to the low-level motion planner to synthesize the end-effector67

trajectory for the robot to execute. Given data D={Si
I , S

i
F ,Λ

i}Mi=1, the objective is that the final68

state estimated by simulating the plan inferred by ManipulationProgram(Si
I ,Λ) on initial state69

Si
I , S̃i

F = Simulate(ManipulationProgram(Si
I ,Λ;Θ)) is close to Si

F . Additionally, we seek70

strong generalization on novel scenes, instructions and plan lengths beyond those encountered during71

training, along with interpretability in sub-goals.72

3 Technical Approach73

We propose a neuro-symbolic architecture to solve the task planning problem described in sec 2.74

Our architecture is inspired by work of Mao et al. [24] for Visual Question Answering (VQA), and75

our model is trained end-to-end with no intermediate supervision. We assume that the reasoning76

required to infer the sub-goals can be represented as a program determined by a Domain Specific77

Language (DSL).The keywords and operators in the DSL, along with the implementation details of78

the operators is provided in the Appendix A.1. We assume a lexer that identifies all the keywords that79

are referred to in the instruction Λ. We do not assume prior knowledge of the semantics of the DSL80

constructs. Our architecture (ref. Figure 1) consists of the following key modules.81

3.1 Language Reasoner (LR)82

The language reasoner (LR) model deduces a symbolic program that corresponds to the manipulation83

task implied by the human’s utterance to the robot. The symbolic program consists of symbolic84

reasoning constructs that operate on neural concepts grounded in the state space of objects in the85

scene and the action space of the robot. Note that representation of a task as a hierarchical and86

compositional program facilitates deep reasoning. Since a high-level task instruction may imply a87

sequence of actions, we adopt a hierarchical model where an auto-regressive model first estimates88

a split for the instruction and then estimates a semantic parse for each factored sub-instruction89

corresponding to a single robot action. Overall the LR module resembles a seq2tree architecture that90

builds on [24], [25]91

3.2 Visual Extractor (VE)92

We assume that we know the gold bounding boxes of the objects in the scene. Following [24], dense93

objects representations are obtained by passing the bounding boxes and the image through a feature94

extractor as [28]. The data association between object proposals is estimated greedily based on cosine95

similarity between the dense object features in the initial/final scenes.96

3.3 Visual Reasoner (VR)97

The visual reasoner focuses on perfoming spatial object-centric reasoning to resolve the objects that98

are to be affected by a symbolic program. The visual reasoner takes as input the deduced program99

from the Language Reasoner and the object features determined by the Visual Extractor and performs100

quasi-symbolic execution of the program on the world state resulting in estimation of objects that are101

involved in the robot action. In effect, this module resolves the spatial and object reasoning in the102

program resulting in a plan consisting of a sequence of symbolic actions grounded in the latent object103

space. Following [24], the visual reasoner consists of neural embeddings and operators corresponding104

to tokens and operators in the DSL. The output is provided to the Action Simulator (AS) to reason105

over action consequences on the world state, a task described below.106

3.4 Action simulator (AS)107

The action simulator is an MLP that learns the semantics of the actions. It takes one-hot representation108

of the action concept, the initial locations of the object to be manipulated and the reference object109

respectively and outputs the target location of the former. The outputted target location of the object110

being manipulated serves as a subgoal for the low-level motion planner. In our experiments, the111

location loc ∈ R5 of an object is determined by the corners b = (x1, y1, x2, y2) of the bounding box112

and the depth d of the object from the camera face.113

Overall, the model can be summarized as follows:114
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• P← LR(Λ; θP , θS), where P is a symbolic program composed of DSL constructs.115

• Π ← VR(P, VE(SI ; θE); θV ). The visual reasoner then grounds P and outputs Π, the116

grounded program. For example, in Figure 1, red and blue subprograms are grounded to117

object 1 and 2 respectively.118

• G← AS(Π; θA). The action simulator then takes Π and returns a sequence of sub-goals,119

G = (g0, g1, ..., gn−1), for the motion planner.120

where, θ represents the corresponding parameters for each module.121

3.5 Loss Function and Model Training122

Given a single-step instruction Λ, the parser predicts a program, P, which is grounded and executed on123

the initial scene, SI to get the predicted final locations of the objects {l̃oc
i

F }Ni=1. Let {lociF }Ni=1 be the124

true locations in the gold final state, SF . As mentioned above loc = (b, d), where b is the corners of125

bounding box and d is the depth. The loss function Lact := α
∑N

i ∥l̃oc
i

F−lociF ∥+β(1−IoU(̃biF , b
i
F ))126

is used to train the action simulator and the visual modules. Since, there is no explicit supervision to127

the parser, we train the parser using the reinforcement learning policy gradient algorithm REINFORCE128

with the reward set to−Lact. An explicit expectation (subtracting the mean action loss as the baseline)129

is computed over all programs to inform the loss, ameliorating the noisy rewards from the action130

simulator. In essence, the Language Reasoner is trained using REINFORCE and the other modules131

parameters are optimized using back prop. (see Fig 1) The details of the curriculum used in the132

training is provided in the Appendix A.2.133

4 Experiments134

In our experiments we study (i) whether our method can infer programs to translate instructions to135

desired goal states, (ii) the extent of generalization to novel instructions and world states and (iii)136

the model’s ability to generalize to multiple-step plans having been trained on simpler plans. A137

demonstration of the learnt model using a simulated Franka Emika is given in the Appendix A.5

Table 1: Accuracy Comparison for the Proposed Model and the Baseline. (BB: Bounding Boxes)
Model Overall Single-step Double step Simple Complex

IOU IOU-M Program IOU IOU-M IOU IOU-M IOU IOU-M IOU IOU-M
(Action/Subj/Pred)

Baseline 0.77 0.55 –/0.81/0.76 0.80 0.56 0.71 0.52 0.90 0.71 0.64 0.31
Ours 0.87 0.72 0.99/0.99/0.94 0.91 0.64 0.87 0.62 0.92 0.73 0.87 0.64

138

4.1 Experimental Setup139

Data collection. The datset is collected using a PyBullet table top environment using a simulated140

Franka Emika Panda robot arm. 6250 synthetic scenes are sampled with 3− 5 blocks (with variations141

in color and type attribute) along with a natural language instruction for each scene. Each data point142

consists of the initial scene, final scene and a language instruction without any sub-goal supervision.143

The main corpus consists of both single-step and double-step commands, along with sentences of144

different complexities:- simple and complex. Complex sentences involve reasoning on inter-object145

relationships, while simple sentences reason over individual object features only. We train the model146

only on this corpus. However, we generate two additional test datasets of size 1000 to evaluate the147

generalization ability of our model. The first has richer scenes (4− 10 objects in each scene) and148

the second has instructions with longer action sequences (multi-step instructions ranging from 3− 7149

steps) than the examples in the main corpus.150

Neural-only baseline. Note that, most of the recent works like [2] uses sub-goal supervision, and151

hence, we cannot use them as baseline to ensure fairness in the evaluation. To study the effectiveness152

of the approach we construct a purely neural baseline inspired and adapted from [29]. We provide153

an object-centric world representation to the baseline without assuming sub-goal supervision for154

comparison with our setting. Moreover, our model and the baseline share the instruction encoder, the155
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action simulator and the visual extractor. Additionally, baseline includes an action decoder that gives156

a dense representation for the action at each timestep, and attention networks that give two probability157

distributions over the objects. These distributions are then used to get the location of the arguments158

(subject and predicate), as a weighted linear combination of the locations of the objects in the scene.159

The action representation, and the two argument locations are passed to the action simulator to get the160

predicted location of the subject. Here, predicted location includes both the bounding box and depth161

of the moved object. The entire architecture is neural and is trained end-to-end via back propagation.162

Metrics. The following metrics are used for evaluation: (i) Intersection over Union (IOU): of the163

predicted bounding boxes in the final scene in comparison with the ground truth bounding boxes164

extracted from the original demonstration. The IOU metric is calculated in 2D in the image space165

(assuming a static camera viewing the scene). Average IOU over all objects in the scene and mean166

IOU for objects moved during execution, termed IOU-M is reported. (ii) Program Accuracy: The167

grounded program inferred for an (instruction, scene)-pair using the proposed model is compared168

with the ground truth program (manually annotated). We separately report the grounding accuracy169

for the subject and predicate of our action (assumed binary) and the accuracy of the predicted action170

inferred from the instruction. Since there is no explicit notion of grounded actions in the baseline, we171

do not report this metric for the baseline.172

4.2 Results173

(a) IoU vs # of objects

(b) IoU vs varying # of steps

Figure 2: Performance in
Generalization Settings

(i) Performance: we use a 80 : 20 train:test split of the main corpus174

for accuracy comparison. Table 1 reports the performance of our175

model and the baseline on the test set. Our model outperforms the176

baseline overall. For instructions with complex reasoning (resolution177

of binary spatial relations) involved, the proposed model outperforms178

the baseline by 33 points in the IOU-M metric. We attribute this to179

the disentangled representations of visual and action concepts that180

allow efficient complex reasoning and manipulation.181

(ii) Generalization to richer environments: The proposed model182

was first trained on scenes having up to 5 objects only, and then183

tested on scenes having up to 10 objects. Even on larger scenes,184

the model is able to interpret the correct object and move it to the185

correct position with marginal decrease in accuracy. The improved186

generalization demonstrated by the model can be attributed to re-187

liance on an object-centric world model and the ability to learn dense188

disentangled representations for spatial and action concepts.189

(iii) Generalization to longer plans: We evaluate model general-190

ization to inferring plans extending to time horizons beyond those191

observed during training. The model is first trained on instructions192

conveying plans with up to few (1-2 step) manipulation actions and193

evaluated on instructions with longer action sequences. The model194

is able to perform scene manipulation up to 7 steps without any195

appreciable drop in accuracy (See Figure 2b). We attribute this to196

the modular structure of our approach compared to the baseline.197

5 Conclusions198

This paper considers the problem of learning to translate instructions to grounded robot plans. We199

present a neuro-symbolic architecture that learns grounded and executable programs via visual-200

linguistic reasoning for instruction understanding over a given scene as well as grounded actions that201

transform the world state towards the intended goal. We demonstrate how the neuro-symbolic model202

can be trained end-to-end and demonstrate a strong generalization to novel scenes and instructions203

compared to a neural-only baseline. Future work will explore (i) plan adaptation guided by dissonance204

between rendered and actual scenes during execution (ii) physical manipulator experiments by training205

on real workspace data and (iii) incorporating notions of induction in the program space to model206

repetitive actions.207
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A Appendix335

A.1 Domain Specific Language (DSL)336

Table 2 list all the keywords and the operators that we have in our DSL.337

Keywords and their classes
Object-level concepts Other concepts

Color: {red, blue, cyan,...} Relation: {left, behind, front,...}
Type: {Cube, Lego, Dice} Action: {MovRight, MovTop,...}

Operators: ( Input→ output)
Scene : None→ ObjSet Unique: ObjSet→ Obj
Filter : (ObjSet, ObjCpt)→ ObjSet Relate : (Obj, RelCpt)→ ObjSet
Move : (ActCpt, World)→World Idle : World→World

ObjectSet ∈ RN, N = Num objects, Object = one-hot ObjectSet
World = {(bi, d)}N

i=1 ∈ R5, bounding boxes and depth for all objects
Table 2: Domain Specific Language.

A.2 Curriculum Strategy338

Since there are multiple stages in our pipeline, and the supervision is available only at the end, it339

is important to define a curriculum in order to train effectively. In particular, we need to first train340

in simpler settings, followed by freezing of certain modules, and then move on to more complex341

instructions. Such curriculum training has been found to be effective in prior neuro-symbolic342

approaches [24] as well. Our curriculum consists of the following steps: (I) We first train on single343

step commands, and with only selection on a single attribute type (e.g., color or size) for any given344

object. This allows our visual reasoner to learn concept embeddings and attribute neural operators,345

and the action simulator to learn disentangled action representations. (II) In the second step, we346

allow for instructions with selection on multiple attribute types. In this step, the action simulator347

is kept frozen; this can be done since action simulator does not directly depend on the linguistic348

variations or the number of attribute types being used to qualify the objects. (III) In the last step,349

we allow for instructions involving multiple steps. In this step of curriculum training, we freeze350

the rest of the pipeline, and only train the splitter (see appendix A.3) in the Language Reasoner351

which splits a given instruction into multiple single step instructions. This can be done, since rest352

of the pipeline can operate as earlier, once a multi-step instruction has been split into its respective353

single-step equivalents. The entire model is then fine-tuned jointly after curriculum training.354

A.3 Training the splitter355

Once we have trained the other modules on single step commands, we train the splitter on all one and356

two step commands in the training set. The splitter computes the probability S(s; θs) of breaking the357

sentence on each token s of the first Lmax tokens. The training objective, for a sentence Λ, can be358

described as359

θS ← argmin
(
Es∼S

[
Lact(Compose(Parser(L0:s), Parser(Ls+1:))

])
where Compose takes input symbolic programs generated by the parser for single step instructions360

and composes them hierarchically. Since all other modules are already trained for single step361

sentences. The splitter learns to split the large sentences at the correct positions.362

A.4 Scene reconstruction363

We additionally train a neural model to synthesize the scene corresponding to each sub-goal, given364

only the initial scene and predicted object locations. This enables us to visualise the scene modification365

without the need of execution by a robot manipulator along with providing interpretability to the366

model’s latent program space. The reconstruction architecture is adapted from [30], where the scene367

graph is constructed with nodes having object features and bounding boxes. This graph is updated368

with predicted bounding boxes at each step, yielding generated scenes. Presence of initial and final369

scenes in our data means we can train in a supervised manner, unlike [30].370
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A.5 Demonstration on a Simulated Robot371

We demonstrate the learned model for interpreting instructions provided to a simulated 7-DOF Franka372

Emika manipulator in a table top setting. The robot is provided language instructions and uses the373

model to predict a program that once executed transitions the world state to the intended one. The374

2-D bounding boxes predicted by the action simulator are translated to 3-D coordinates in the world375

space via a learnt MLP using simulated data. The predicted positions are provided to a low-level376

motion planner for trajectory generation with crane grasping for picking/placing. Each step of the377

robot simulation is then performed by grasping the object at the initial location, moving the gripper378

to the final predicted location, and releasing the gripped object. Figure 3 shows execution by the379

robot manipulator on complex instructions, scenes having multiple objects, double step relational380

instructions, and multi-step instructions. We also visualise reconstruction of the moved objects before381

each step of the actual execution. The structural similarity index (SSIM) for the reconstruction model382

is 0.935.383

Figure 3: Execution of robot manipulator on (a) compound instructions, (b) scene with 15 objects, (c) double
step instruction with relational attributes, (d) 5-step instruction. (d) also shows reconstruction of the predicted
scene before each step of the simulation
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