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Abstract

We study the statistical guarantees for the Imitation Learning (IL) problem in1

episodic MDPs. Rajaraman et al. [22] show an information theoretic lower bound2

that in the worst case, a learner which can even actively query the expert policy3

suffers from a suboptimality growing quadratically in the length of the horizon,4

H . We study imitation learning under the µ-recoverability assumption of [27]5

which assumes that the difference in the Q-value under the expert policy across6

different actions in a state do not deviate beyond µ from the maximum. We show7

that the reduction proposed by [25] is statistically optimal: the resulting algorithm8

upon interacting with the MDP for N episodes results in a suboptimality bound9

of Õ (µ|S|H/N) which we show is optimal up to log-factors. In contrast, we10

show that any algorithm which does not interact with the MDP and uses an offline11

dataset of N expert trajectories must incur suboptimality growing as & |S|H2/N12

even under the µ-recoverability assumption. This establishes a clear and provable13

separation of the minimax rates between the active setting and the no-interaction14

setting. We also study IL with linear function approximation. When the expert15

plays actions according to a linear classifier of known state-action features, we use16

the reduction to multi-class classification to show that with high probability, the17

suboptimality of behavior cloning is Õ(dH2/N) givenN rollouts from the optimal18

policy. This is optimal up to log-factors but can be improved to Õ(dH/N) if we19

have a linear expert with parameter-sharing across time steps. In contrast, when the20

MDP transition structure is known to the learner such as in the case of simulators,21

we demonstrate fundamental differences compared to the tabular setting in terms22

of the performance of an optimal algorithm, MIMIC-MD (Rajaraman et al. [22])23

when extended to the function approximation setting. Here, we introduce a new24

problem called confidence set linear classification, that can be used to construct25

sample-efficient IL algorithms.26

1 Introduction27

In many practical sequential decision making problems it is difficult to manually design reward28

functions that capture the essence of carrying out the task “nicely”. Furthermore, many modern-day29

reinforcement learning tasks operate in very large state and action spaces - with sparse reward30

feedback it is difficult to train good agents without additional feedback or supervision. This motivates31

the setting of Imitation Learning (IL) where the learner operates in a setting of unknown or unreliable32

rewards, but with an expert that provides demonstrations as to how to carry out the task in the33

desirable way. The work of [21] first showed that using expert demonstrations can significantly34

improve performance in autonomous driving applications. Imitation Learning approaches have found35

remarkable success in practice over the last decade since expert demonstrations are often available36

abundantly such as in game AI [13, 1], as well as more recently in autonomous-driving applications37
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such as [5, 20]. In this paper, we study IL in the episodic Markov Decision Process (MDP) formalism.38

39 Notation: An MDPM = (S,A, P, ρ, r), where S is the state space, A is the action space P is40

the MDP transition, ρ is initial state distribution and r is the reward function. The value Jr(π) of41

a policy π is defined as the expected cumulative reward accumulated over an episode of length H ,42

Jr(π) = Eπ[
∑H
t=1 rt(st, at)], where the notation Eπ[·] denotes expectation with respect to a random43

trajectory {(s1, a1), · · · , (sH , aH)} obtained by rolling out the policy π = (π1, · · · , πH), where the44

initial state s1 is sampled independently from an initial state distribution ρ(·). Here πt denotes the45

policy at time step t. In the IL setting, we assume that the underlying reward function is unknown46

and unobserved. The reward function r = {r1, · · · , rH} is assumed to be time-variant and pointwise47

bounded in [0, 1], and the transition function P = (P1, · · · , PH−1) of the MDP is also assumed to48

be time-variant. The simplest IL setting is the no-interaction setting [22].49

Definition 1 (IL in the no-interaction setting). The learner is provided an offline dataset D of N50

trajectories (without rewards) drawn by independently rolling out an (unknown) expert policy π∗51

through the MDP. The learner is not allowed to interact with the MDP.52

The learner’s objective in IL is to construct a policy π̂ with small suboptimality, defined as the53

difference in the expert’s and learner’s values: Jr(π∗)− Jr(π̂). In this paper we restrict the expert54

policy to be deterministic and define π∗t (s) as the action played by the expert at time t at state s. An IL55

instance refers to the tuple (M, π∗).The Q-function of a policy π is defined as the expected reward-56

to-go, Qπt (s, a) = Eπ[
∑H
t′=t rt′(st′ , at′)|st = s, at = a], and fπt (s) is defined as the distribution57

over states induced at time t, by rolling out the policy π.58

Since the expert policy is a collection of actions played at different states visited by the expert, a59

natural approach to IL is to use any classification algorithm to learn a mapping from states to actions60

as the learner’s policy. This supervised learning approach has proved to be quite popular in practice61

and is known as behavior cloning (BC). [25] study BC from a theoretical point of view, and bound62

the suboptimality of a policy in terms of the 0-1 loss of the resulting classifier. More recently, in63

the tabular setting, [22] show that BC is statistically optimal in the no-interaction setting, achieving64

expected suboptimality . |S|H2

N . This H2 dependence is known as error-compounding and is shown65

to be necessary even if expert is optimal or the learner can actively query the expert.66

Definition 2 (IL in the active setting). In this setting, the learner is not provided a dataset of expert67

demonstrations up front. The learner can instead interact with the MDP for N episodes. While68

interacting, the learner can query an oracle to return the expert’s action π∗t (s) at the current state s.69

It begs the question as to why approaches such as DAGGER ([25]) and AGGREVATE ([26]) which70

actively query the expert often perform better than BC in practice and to explain this gap, additional71

assumptions must be imposed. To this end, we look at the minimax lower bound of [22] in the72

no-interaction setting. The key idea of the lower bound is to include an absorbing “bad” state in the73

MDP which is never visited in the expert dataset and offers no reward. Any policy which visits this74

state is doomed to incur a large suboptimality - in the absence of full information, the learner is forced75

to visit this often. The lower bound instance is pathological in the sense that even if the expert itself76

visits the bad state, it is never able to “recover” and return to the remaining states. Indeed in practical77

situations such as driving a car, experts often can recover and collect a high reward even if a mistake78

is made locally. [25] introduce an assumption to this effect, which we refer to as µ-recoverability.79

Definition 3 (µ-recoverability). An IL instance is said to satisfy µ-recoverability if for each t ∈ [H]80

and s ∈ S, Ea∼π∗t (·|s)
[
Qπ
∗

t (s, a)
]
−Qπ∗t (s, a) ≤ µ for all actions a ∈ A. Informally, if the expert81

plays an “incorrect” action at any state s at a single time t and goes back to choosing the correct82

actions afterwards, the expected reward collected is less by at most µ.83

Under the µ-recoverability assumption, [25] show that a learner which minimizes the 0-1 loss under84

the learner’s own state distribution to ε admits a suboptimality upper bound of µHε. However, it is85

a-priori unclear how small ε can be made as a function of the number of the size of expert dataset86

/ number of MDP interactions, N in the no-interaction / active settings. This is a drawback of the87

reduction approach followed by [25, 27] since it cannot distinguish the power of learners in different88

interaction models. In this paper, we circumvent the reduction guarantees and propose an policy in89

the active setting with expected 0-1 loss under the learner’s own state distribution bounded by |S|/N .90

Informal Theorem 1 (Formal version: Theorem 1 and 2). In the active setting, under the91

µ-recoverability assumption, there exists a learner π̂ which incurs expected suboptimality92
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E [J(π∗)− J(π̂)] . µH|S|/N . Furthermore, if N ≥ |S|H , for any learner π̂ in the active setting,93

there exists an MDP such that the expected suboptimality E [J(π∗)− J(π̂)] & µH|S|/N .94

The key challenge for a learner to minimize the 0-1 under its own state distribution is that the learner’s95

policy changes over the course of optimization. Note however that it is possible to compute an96

unbiased estimate of the 0-1 loss under the learner’s own state distribution by rolling out just a single97

trajectory. Thus the active sampling model plays a crucial role in this regard. idea is crucial towards98

constructing the learner policy discussed in Informal Theorem 1. Under the same µ-recoverability99

assumption, we next consider learners in the no-interaction setting. In contrast to the active setting,100

we show that error compounding is unavoidable for no-interaction learners.101

Informal Theorem 2 (Formal version: Theorem 3). In the no-interaction setting, for any learner102

π̂ there exists an IL instance which satisfies µ-recoverability for µ ≥ 1 such that the expected103

suboptimality is E [J(π∗)− J(π̂)] & H2|S|/N .104

This is the first result to establish a clear separation in the statistical minimax rate of the suboptimality105

incurred by learners in the no-interaction setting such as BC, and learners which can interact with the106

MDP, such as DAGGER [27] and AGGRAVATE [26].107

A common theme of the previous bounds in the tabular setting is that the suboptimality necessarily108

scales linearly in the number of states. In practical RL settings, state and actions spaces are often109

continuous, and thus additional assumptions are required to carry out efficient learning. In this paper,110

we study IL with function approximation, in particular in the linear-expert setting.111

Definition 4 (Linear-expert setting). In this setting, for each (s, a, t) tuple, the learner is provided a112

feature representation φt(s, a) ∈ Rd. For each t ∈ [H] there exists an unknown vector θ∗t ∈ Rd such113

that ∀s ∈ S, π∗t (s) = arg maxa∈A〈θ∗, φt(s, a)〉.114

As we discuss in Remark 1, the linear-expert setting generalizes several known settings such as when115

the expert is an optimal policy under the linear-Q∗ assumption as well as the tabular setting with an116

optimal expert. We first establish a bound on the expected suboptimality incurred by BC.117

Informal Theorem 3 (Formal version: Theorem 4). Under the linear-expert setting, the policy π̂118

returned by BC incurs suboptimality J(π∗)− J(π̂) . (d+log(1/δ))H2 log(N)
N with probability ≥ 1− δ.119

The presence of this error-compounding is not so surprising because the tabular setting with an120

optimal expert is a special case of the linear-expert setting where [22] show that error compounding121

is unavoidable for no-interaction learners. In order to break this H2-dependence, we introduce a122

natural variant of the linear-expert setting known as linear-expert setting with parameter sharing.123

Definition 5 (Linear-expert with parameter sharing). This setting is the same as the linear-expert124

setting (Definition 4), with the added constraint that for all t, θ∗t = θ∗ is shared across time.125

Our main contribution is to show that in the linear-expert setting with parameter sharing, IL can126

be reduced to sequence multi-class linear classification where we learn linear classifiers from127

SH → AH . The supervised learning reduction of [25] posits to learn separate classifiers from128

S → A or S × [H]→ A: this fails to account for the shared parameter θ∗ across time. While in both129

cases the resulting policy is an ERM classifier, the suboptimality grows quadratically in H using the130

supervised learning reduction. In contrast, using the multi-class classification algorithm of [8], we131

also provide an algorithm π̂ with suboptimality growing linearly in H .132

Informal Theorem 4 (Formal version: Theorem 5). Under the linear-expert setting with parameter133

sharing, there exists a learner π̂ with suboptimality J(π∗) − J(π̂) . (d+log(1/δ))H log(N)
N with134

probability ≥ 1− δ.135

With the additional linearity assumption on the expert, the learner can potentially infer the expert’s136

action on states that are not observed in the dataset. However in the absence of transition information137

or the parameter sharing assumption, a learner cannot even distinguish between different actions at138

the remaining states, which is what leads to catastrophic error compounding. To remedy this issue, we139

borrow from the work of [22, 23] who study IL in the known-transition setting in tabular MDPs where140

the learner exactly knows the Markov transition kernel and the initial state distribution of the MDP.141

The motivation for this setting stems from autonomous driving applications where policies are often142

learned in a simulated environment prior to fine-tuning in the real world [9, 33] and in the simulator143

the rewards functions are still difficult to specify. In such settings, the state and action spaces are144

indeed unbounded, which makes it ideal to study through the frame of function approximation.145
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Definition 6 (IL in the known-transition setting). The learner is provided an dataset D of N146

trajectories (without rewards) drawn by independently rolling out the expert policy π∗ through the147

MDP. The learner also knows the MDP transition P and initial state distribution ρ exactly.148

In the tabular setting, the known transition setting has an interesting landscape: it is known from [22]149

that the quadratic-H barrier can be broken - the authors propose the MIMIC-MD algorithm which150

achieves an expected suboptimality upper bound of |S|H3/2/N and this dependence on the horizon151

is optimal [23]. The key idea is that with access to the MDP transition structure, as long as the visited152

states are conditioned to be observed in the dataset (so the expert’s action is known), the learner can153

simulate artificial trajectories according to the expert’s policy to generate more training data.154

While the approach of simulating artificial trajectories in MIMIC-MD achieves the minimax optimal155

bounds here, a natural question to ask is whether the approach is tailored to work only in the tabular156

setting. Indeed in the presence of continuous state spaces, the learner may observe but a measure-0157

subset of the state-space in the expert dataset. In spite of this, to apply the approach of simulating158

artificial trajectories, the learner must be able to infer the expert’s actions on a large fraction of the159

state-space. To this end, in the known-transition setting, we propose a problem known as confidence160

set linear classification which extends multi-class linear classification and we prove that algorithms161

with small expected loss for confidence set linear classification can be used to construct policies162

with small suboptimality, using the approach of simulating artificial trajectories. At a high level, the163

objective of the learner is to not only otput a classifier, but also a set of inputs (confidence set) where164

the classifier certifiably outputs the correct label.165

Definition 7 (Confidence set linear classification). Consider a classification problem on X with input166

distribution ρX , output space Y , with features φ : X × Y → Rd and a dataset D of N examples167

drawn i.i.d. as xi ∼ ρX and yi ∼ h∗(xi), where h∗ is an unknown linear multi-class classifier168

mapping x 7→ arg maxy∈Y 〈θ∗, φ(x, y)〉. Given the dataset D, a confidence set linear classifier169

returns a tuple (ĥ,X ) where ĥ is any classifier from X → Y and X ⊆ X is a measurable set of170

inputs (known as the confidence set) such that ∀x ∈ X , ĥ(x) = h∗(x). The learner’s objective is to171

minimize the expected loss E [1− ρX(X )].172

Sample-efficient confidence set linear classification algorithms can be used to construct learners173

with small suboptimality. We prove such a reduction in the linear-expert setting with linear rewards:174

here, in addition to the linear-expert setting, for each t ∈ [H], the reward function rt(·, ·) is also175

constrained to be a linear function of the feature representations φt(·, ·). The linear reward setting176

was considered previously in the known transition setting in [3]. We formally define it in Definition 8.177

Informal Theorem 5 (Formal version: Theorem 6). Consider any algorithm Alg for confidence178

set linear classification and define RN,d(ρX , Y, ψ) as the expected loss (Definition 7) incurred by179

Alg when (i) the input distribution is ρX , (ii) features are ψ : X × Y → Rd and (iii) the learner is180

provided a dataset of N samples (with labels from an unknown multi-class linear classifier). In the181

linear-expert setting with linear rewards, there exists a learner policy π̂ with expected suboptimality:182

E [J(π∗)− J(π̂)] . H3/2

√
d

N

∑H
t=1 RN,d(fπ

∗
t ,A, φt)

H
(1)

Informal Theorem 5 shows that it suffices to find good algorithms for confidence set linear classi-183

fication and bound Rd,N (ρX , Y, φ) to carry out sample efficient IL. However, even in the case of184

binary output space Y = {0, 1} and uniformly distributed features, the answer to this question is185

quite challenging and admits a non-standard rate.186

Informal Theorem 6 (Formal version: Theorem 7). Consider an instance of confidence set linear187

classification where Y = {0, 1}, ρX = Unif(Sd−1) and φ(x, 0) = −φ(x, 1) = x/2 ∈ Rd. Then, for188

sufficiently large N ,189

(i) For any algorithm d3/2

N
√

log(d)
. Rd,N,A(ρX , Y, φ).190

(ii) There exists an algorithm such that Rd,N,A(ρX , Y, φ) . d3/2 log(d)
N .191

This result shows that the minimax risk for confidence set linear classification necessarily grows192

as & d3/2/N . This rate establishes a fundamental difference between function approximation and193

tabular settings. In the tabular setting, where the features for each state-action pair are orthogonal, the194

learner cannot conclude the labels at unobserved states. Thus, the minimax risk of confidence set195
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linear classification corresponds to the expected probability mass on unobserved states, which is also196

known as the missing mass [18]. It is known from [22, Lemma A.20] that the expected missing mass197

is . |S|/N ≡ d/N under any distribution over states and binary action space. Informal Theorem 6198

establishes a fundamental difference between the tabular setting and the linear-expert setting with199

linear rewards, in terms of the suboptimality guarantees achieved by the approach of simulating200

artificial trajectories.201

While the upper bound in Informal Theorem 6 (ii) only applies in the special case of binary classifica-202

tion with uniformly distributed features, we conjecture that the minimax expected loss for confidence203

set linear classification is d3/2

N . If this conjecture is true, then Informal Theorem 5 shows that there204

exists a learner π̂ in the known-transition setting with linear-expert and linear rewards such that the205

expected suboptimality is . H3/2d5/4/N . For sufficiently large H , this improves the Θ̃(dH2/N) of206

BC and achieves the optimal dependence on the horizon [23].207

1.1 Related Work208

There is a long line of history studying the IL problem, [2, 32, 24, 35, 25, 10, 11, 19, 14]. A number209

of algorithms target the H2 error compounding issue, [12, 15, 17, 4, 34]. [25, 27, 4] study IL in the210

reduction framework, where they reduce the IL problem to a supervised learning problem and study211

the how the supervised learning error translates to the IL error. DAGGER [27], AGGREVATE [26],212

and AGGREVATED [29] learn policies by actively interacting with the environment and the expert213

during training. Going beyond the tabular setting, [3, 31] study IL in the presence of linear function214

approximation. [30] study IL in a setting where expert actions are not observed in the dataset. [6, 16]215

analyze DAGGER and dynamic regret under some regularity conditions, in comparison with the static216

regret reductions of [27], [7] propose a policy learning method called LOKI based on bootstrapping217

policy gradient methods using IL.218

2 IL with µ-recoverability219

As defined in Definition 3, the µ-recoverability assumption captures the ability of an expert to220

recover and collect a high reward at a state even upon locally deviating from its action distribution at221

states. The reduction in [27, Theorem 2] shows that under µ-recoverability, a learner policy π̂ which222

minimizes the 0-1 loss with respect to the expert’s policy under the learner’s own state distribution,223

L(f π̂, π̂, π∗) ,
1

H

∑H

t=1
Es∼f π̂t (·)

[
Ea∼π̂t(·|s) [1(a 6= π∗t (s)]

]
. (2)

to be less than ε, incurs suboptimality upper bounded by µHε. However, in the active setting, it is224

a-priori unclear how small ε can be made as a function of the number of times the learner interacts225

with the MDP, N . We address this question in the following theorem.226

Theorem 1. In the active setting it is possible to construct a learner policy π̂ such that227

E
[
L(f π̂, π̂, π∗)

]
. |S|/N . Furthermore, under µ-recoverability, J(π∗)− E[J(π̂)] . µ|S|H/N .228

Following the no-regret reduction of [27], it suffices for the learner to find a sequence of policies229

π̂1, · · · , π̂T such that the online-learning regret,230

1

N

∑N

i=1
L(f π̂

i

, π̂i, π∗)−min
π

1

N

∑N

i=1
L(f π̂

i

, π, π∗) .
|S|
N
. (3)

Then, the mixture policy 1
N

∑N
i=1 π̂

i satisfies L
(
f π̂, π̂, π∗

)
. |S|

N . Note that in eq. (3), the ora-231

cle loss minπ
1
N

∑N
i=1 L(f π̂

i

, π, π∗) is in fact 0, achieved by π = π∗. Suppose for each i, the232

learner rolls out a single trajectory according to π̂i. Denoting the empirical state-visitation dis-233

tribution f̂π
i

= (f̂ π̂
i

1 , · · · , f̂ π̂iH ), observe that, 1
N

∑N
i=1 L(f̂ π̂

i

, π̂i, π∗) is an unbiased estimate of234

1
N

∑N
i=1 L(f π̂

i

, π̂i, π∗) if π̂i is a measurable function the first i− 1 rolled out trajectories (according235

to π̂1, · · · , π̂i−1). Thus, it suffices for the learner to find a sequence of policies π̂1, · · · , π̂T which min-236

imize the empirical online-learning regret: 1
N

∑N
i=1 L(f̂ π̂

i

, π̂i, π∗)−minπ
1
N

∑N
i=1 L(f̂ π̂

i

, π, π∗)237

to be . |S|
N . As we discuss in more detail in the Appendix, it is possible to construct a sequence of238

policies π̂1, · · · , π̂N using entropy-regularized mirror descent [28] which minimizes the empirical239

online-learning regret to be . |S|/N . The resulting policy π̂ = 1
N

∑N
i=1 π̂

i minimizes the expected240
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0-1 loss under its own state distribution to be . |S|/N in expectation. The guarantee on the expected241

suboptimality of this policy directly follows from [27, Theorem 2] under µ-recoverability.242

This suboptimality guarantee is optimal for any learner in the active setting. The lower bound instance243

essentially follows from that of [22] for the active tabular setting where if N ≥ |S|H , the expected244

suboptimality incurred is & |S|H2

N . By scaling each reward by a factor of µ/H , the same family of IL245

instances now satisfies µ-recoverability and results in the lower bound for active learners.246

Theorem 2. In the active setting, if N ≥ |S|H , every learner π̂ incurs expected suboptimality247

E[J(π∗)− J(π̂)] & µ|S|H/N .248

Now, under the same µ-recoverability assumption, we study learners in the no-interaction setting. We249

prove a lower bound that in the worst case, error compounding is unavoidable for such learners.250

Theorem 3. For |S| ≥ 3 and |A| ≥ H , for any learner π̂, in the no-interaction setting, there251

exists an IL instance which satisfies µ-recoverability for µ ≥ 1 such that the expected suboptimality252

incurred by the learner is lower bounded, E [J(π∗)− J(π̂(D))] & min
{
H, |S|H2/N

}
.253

The lower bound we consider is a modification of the lower bound of [22] where the MDP is254

constructed to have a “bad” state in the MDP never visited by the expert. We modify the instance to255

add a single “recovery” action at the bad state; the instance now satisfies µ-recoverability for any256

µ ≥ 1. If the number of actions are large |A| ≥ H , any no-interaction learner still fails to identify257

the recovery action with constant probability. In essence this reduces the instance to the lower bound258

of [22] and any no-interaction learner incurs an expected suboptimality & min{H, |S|H2/N}.259

The classical reduction formulations of [25, 27] prove upper bounds for IL based on minimizing a260

certain surrogate objective. However the statistical rate of minimizing different surrogate objectives261

as a function of the number of interactions (active setting) / size of the expert dataset (no-interaction262

setting) is unclear. As we show here, with µ-recoverability, the surrogate objective of 0-1 loss under263

the learner’s policy can be minimized to |S|/N in the active setting, but this is impossible in the264

no-interaction setting. Going beyond the reduction formulation, we thus distinguish between the265

statistical power of learners under different interaction models.266

3 Linear function approximation in the no-interaction setting267

In this section, we go beyond the tabular setting and study IL in the presence of function approximation.268

In practical settings, state and action spaces are often continuous or unbounded and carrying out269

efficient IL requires imposing additional assumptions. In this section we study the linear-expert270

setting (Definition 4) where S and A may be unbounded, but the learner is provided a set of feature271

representations of state-actions, and the expert policy is constrained to be realizable by a unknown272

linear (in the feature representations) classifier. The linear-expert setting generalizes several known273

settings as we discuss in the following remark.274

Remark 1. The linear-expert setting (Definition 4) generalizes the linear-Q∗ setting with an optimal275

expert. Under this assumption, the optimal expert policy plays actions according to π∗t (s) =276

arg maxa∈AQ
∗
t (s, a) = arg maxa∈A〈θ∗t , φt(s, a)〉 for an unknown θ∗t ∈ Rd. Thus the expert plays277

actions according to a linear multi-class classifier. Since the tabular setting is a special case of the278

linear-Q∗ setting with d = |S||A|, with features for each t chosen as the standard basis vectors in279

Rd, the linear-expert setting with d = |S||A| generalizes the tabular setting with an optimal expert.280

In the tabular setting, it is known that the expected suboptimality of behavior cloning isO
(
|S|H2/N

)
281

in the worst case which is minimax optimal [22]. We first establish an upper bounds on the subopti-282

mality incurred by BC in the linear-expert setting.283

Theorem 4. For t = 1, · · · , H , denote (D)t as a collection of N state-action pairs visited at time t284

across trajectories in D. Consider a learner policy which trains a policy π̂ using BC as follows: for285

each t = 1, · · · , H , the learner trains a linear multi-class classifier ĥt : S → A on the dataset (D)t286

using the algorithm of [8] and plays the policy π̂t(s) = ĥt(s). Then, in the linear-expert setting, with287

probability 1− δ, the suboptimality of π̂ is upper bounded by J(π∗)− J(π̂) . H2(d+log(1/δ)) log(N)
N .288

This result is in fact a special case of Theorem 5 where we prove guarantees in the linear-expert289

setting with parameter sharing, where the expert plays according to the same linear classifier shared290
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across the episode. In Remark 2, we show that the linear-expert setting with parameter sharing with291

dimension dH generalizes the linear-expert setting with dimension d.292

Remark 2. Linear-expert setting with dimension d is a special case of the linear-expert setting293

with parameter sharing, with dimension dH . Define θ∗ = (θ∗1 , · · · , θ∗H) ∈ RdH and φ′t(s, a) =294

(0d, · · · , φt(s, a), · · · , 0d) ∈ RdH where φt(s, a) is embedded in the coordinates td+ 1 to (t+ 1)d.295

Then, π∗t (s) = arg maxa∈A〈θ∗t , φt(s, a)〉 = arg maxa∈A〈θ∗, φ′t(s, a)〉, satisfying Definition 5.296

3.1 Linear-expert with parameter sharing: Reducing IL to sequence classification297

In this section, we demonstrate a reduction of IL to sequence multi-class linear classification from298

SH → AH , in contrast to BC which learns a classifier from S → A. First note that the expert’s policy299

can be thought of as a classifier from SH → AH : for each input sequence of states (s1, s2, · · · , sH)300

the expert “classifier” outputs the sequence of actions (π∗1(s1), π∗2(s2), · · · , π∗H(sH)). The learner301

obtains N i.i.d. trajectories from the expert which are examples in the classification training dataset,302

and the objective is to predict actions for each new trajectory from the expert. Define Θ as the set of303

linear multi-class classifiers for sequences, of the form304

SH 3 (s1, · · · , sH) 7→ arg max
a1,··· ,aH∈A

〈
θ,
∑H

t=1
φt(st, at)

〉
∈ AH . (4)

for θ ∈ Rd. Note that under the linear-expert assumption with parameter sharing, the ex-305

pert’s policy can be identified as a classifier in the family described above. At each state s,306

the expert plays the action according to arg maxa∈A〈θ∗t , φt(s, a)〉 at time t. Summing over any307

sequence of states s1, · · · , sH , the expert’s policy therefore satisfies (π∗1(s1), · · · , π∗H(sH)) =308

arg maxa1,··· ,aH 〈θ
∗,
∑H
t=1 φt(st, at)〉.309

Note that classifiers of the form eq. (4) indeed correspond to meaningful (Markovian) policies.310

Indeed the map in eq. (4) is separable as
∑H
t=1 arg maxat∈A〈θ, φt(st, at)〉. By contradiction, the311

action played by the classifier at any state st at time t must be arg maxat∈A〈θ, φt(st, at)〉 which312

is Markovian. Finally, we prove a bound on the suboptimality of the policy induced by θ̂ by the313

expected 0-1 loss of θ̂. The intuition is that in any trajectory where the learner’s actions exactly match314

the expert’s actions, no suboptimality is incurred. In contrast, in any trajectory where the learner315

plays an action different from the expert at some time, the suboptimality incurred is ≤ H .316

Lemma 1. Consider any linear multi-class classifier θ̂ : SH → AH (in eq. (4)) with expected 0-1317

loss, Eπ∗ [1(θ̂(s1, · · · , sH) 6= (a1, · · · , aH))] ≤ γ. Then, the policy π̂ corresponding to the linear318

classifier θ̂, satisfies J(π∗)− J(π̂) ≤ Hγ.319

[8] provide a compression based algorithm for linear multi-class classification in the realizable setting.320

Indeed, invoking [8, Theorem 5], it is possible to learn a linear classifier θ̂ ∈ Θ such that the expected321

0-1 loss of the classifier is upper bounded by (d+log(1/δ)) log(N)
N given N expert trajectories. In322

conjunction with Lemma 1 this results in an upper bound on the suboptimality of the resulting policy.323

Theorem 5. Consider a learner π̂ which trains a classifier θ̂ from the family in eq. (4) on the324

expert dataset using the compression based learner of [8], and at each time t and state s, π̂t(s) =325

arg maxa∈A〈θ̂, φt(s, a)〉. Under the linear-expert assumption with parameter sharing, with probabil-326

ity ≥ 1− δ, the suboptimality of the learner’s policy satisfies J(π∗)− J(π̂) . H(d+log(1/δ)) log(N)
N .327

4 Linear function approximation under known-transition assumption328

The framework of [23] shows that IL under the known-transition setting can be reduced to the problem329

of uniform expert value estimation: the problem of estimating the value of the expert policy under330

all reward functions. The authors show that given a uniform expert value estimator J̃r(π∗), which331

with probability 1− δ (over the expert dataset and external randomness) for all reward functions r,332

satisfies |Jr(π∗)− J̃r(π∗)| ≤ ε, then the policy π̂ output by the following optimization problem,333

π̂ ← arg min
π

max
r
J̃r(π)− Jr(π) (OPT)

incurs suboptimality J(π∗)− J(π̂) ≤ 2ε with the same probability 1− δ. In this context, to execute334

the approach of simulating artificial trajectories, observe that a learner can construct a good estimate335

7



of the expert’s value under some reward function r by decomposing it as the sum of two parts:336

J1
r (π∗) = E

[∑H

t=1
rt(st, at)1(E)

]
, and J2

r (π∗) = E
[∑H

t=1
rt(st, at)1(Ec)

]
. (5)

where E is the event that the all the states (s1, · · · , sH) visited in the trajectory are observed in the337

expert dataset. The first term, J1
r , can be estimated to an arbitrary level of accuracy for any reward338

function r by rolling out many artificial trajectories using π∗, known at all states observed in the339

dataset. The remaining term, J2
r can be tackled using a simple empirical estimate. The error in340

uniform value estimation therefore stems from the error of the empirical estimate which is shown to341

be O(|S|H3/2/N) in [22], translating to the suboptimality of the policy π̂ in (OPT).342

It is a natural question to ask whether this approach of simulating artificial trajectories can be applied343

when state and action spaces may be unbounded. To effectively use such an approach, the learner344

should be able to infer the expert’s action at a large fraction of states in spite of observing the expert’s345

actions only on a measure-0 subset of states. We show a that if the learner is able to identify the346

expert’s policy on a known large measure of states (under the expert’s state distribution), then the347

approach of simulating artificial trajectories can be employed to give a policy with small suboptimality.348

We establish such a reduction under the linear-expert setting with an additional assumption on the349

linearity of rewards which we introduce below. The linear reward setting was first introduced in [3]350

in the known-transition and discounted setting. Here, imposing the linear reward assumption enables351

the learner to construct linear estimates of the expert value function, which is otherwise not possible.352

Definition 8 (Linear reward assumption). DefineRlin as the family of reward functions which take353

the form of an unknown linear function of the known feature representation of states. Namely354

Rlin = {{rt(s, a) = 〈ωt, φt(s, a)〉 : t ∈ [H], s ∈ S, a ∈ A} : ∀t ∈ [H], ωt ∈ Rd, ‖ωt‖∞ ≤ 1}.355

The features are assumed to satisfy ‖φt(s, a)‖1 ≤ 1. The linear reward assumption assumes the true356

reward function of the MDP belongs toRlin.357

We propose an extension of MIMIC-MD to the linear-expert setting with linear rewards. The algorithm358

is based on identifying a set of states X1, · · · ,XH on which the expert’s policy is exactly known. The359

learner then constructs a uniform expert value estimator by simulating artificial trajectories using the360

expert policy conditioned on visiting only these states and uses an empirical estimate of the reward361

on the remaining states. The final policy is output using the minmax optimization problem in (OPT).362

A formal description is provided in Algorithm 1.

Algorithm 1 MIMIC-MD under linear-expert and linear rewards assumption
1: Input: A dataset D of N expert policy rollouts; MDP transition P ; feature representations
{φt(s, a) : t ∈ [H], s ∈ S, a ∈ A}; confidence set linear classification algorithm Alg.

2: Pick a uniformly random permutation of the trajectories of D and assign the first N/2 as D0 and
the remaining trajectories as D1.

3: For t = 1, · · · , H: define (ĥt,Xt(D0)) as the output of Alg((D0)t)
. (D0)t are state-action pairs at time t across trajectories in D0.
. ĥt is a classifier from S → A and can be identified as a policy.
. Xt(D0) captures a set of states on which expert’s action is certifiably known.

4: Define event ED0
= {∀t ∈ [H], st ∈ Xt(D0)}: all states in a trajectory belong to {Xt(D0)}Ht=1.

5: Define the expert value estimator,

J̃r(π
∗) = Eπ∗

[∑H

t=1
rt(st, at)1(ED0

)

]
+ Etr∼Unif(D1)

[∑H

t=1
rt(st, at)1

(
EcD0

)]
(6)

. The estimator is measurable: the first term can be estimated by rolling out many trajectories
using the policy (ĥ1, · · · , ĥt), equal to (π∗1 , · · · , π∗H) under the measurable event ED0

6: Output: Return π̂ ← arg minπ maxr∈Rlin
J̃r(π)− Jr(π). .Rlin is defined in Definition 8

363
Theorem 6. The expected suboptimality of the policy π̂ returned by Algorithm 1 under the linear-364

expert setting with linear rewards can be upper bounded by,365

E [J(π∗)− J(π̂)] . H3/2

√
d

N

∑H
t=1 E [Prπ∗ (st 6∈ Xt(D0))]

H
(7)
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Note that for each t = 1, · · · , H , the probability Prπ∗ (st 6∈ Xt(D0)) is the loss (as defined in366

Definition 7) of the confidence set linear classifier Alg((D0)t) in Algorithm 1.367

As a consequence of Theorem 6, it suffices to upper bound the loss of the confidence set linear368

classification algorithm Alg. However, it is quite a challenging problem to compute the minimax risk369

for confidence set linear classification. Below, we discuss the case of binary classification.370

4.1 Confidence set linear classification with binary outputs371

In this section, we study confidence set linear classification when the output space Y = {0, 1} is372

binary. Denote the dataset D provided to the learner as {(x1, y1), · · · , (xn, yn)} where yi = 0 if373

〈θ∗, φ(x, 0)〉 ≥ 〈θ∗, φ(x, 1)〉 and 1 otherwise for some unknown θ∗ ∈ Rd. For each sample xi374

observed in the dataset, the learner can conclude that 〈θ∗, φ(xi, 0)〉 − 〈θ∗, φ(xi, 1)〉 is non-negative375

if yi = 0 and is non-positive if yi = 1. In other words, for each xi, the learner can conclude that376

〈θ∗, φ(x, y) − φ(x, 1 − y)〉 ≥ 0. Incorporating the information from all samples in the dataset,377

the learner can localize θ∗ to a cone Θ =
{
θ ∈ Rd : ∀(x, y) ∈ D, 〈θ, φ(x, y)− φ(x, 1− y)〉 ≥ 0

}
.378

This cone captures the maximum amount of information the learner can discern about θ∗. Indeed,379

every linear classifier θ ∈ Θ correctly classifies every sample x observed in the dataset as the correct380

label 0 or 1 observed in the dataset. Given the cone Θ which captures the uncertainty in θ∗, one can381

construct a set of inputs C which captures the set of inputs that are classified as the same label by382

every θ ∈ Θ. We prove that largest such C can be directly constructed from the dataset D as,383

C = K ∪−K, (8)
where K is the conical hull of the set of points (φ(xi, 0)− φ(xi, 1)) (−1)yi for i = 1, · · · , n.384

Lemma 2. The set C ⊆ X as defined above satisfies the following two properties:385

(i) For each x ∈ C, sign(〈θ, φ(x, 0)− φ(x, 1)〉) = sign(〈θ∗, φ(x, 0)− φ(x, 1)〉).386

(ii) For any x 6∈ C and any classifier ĥ, there exists θ ∈ Θ such that ĥ(x) 6= I(〈θ, x〉 ≤ 0).387

Therefore, the learner can guarantee that the label was correctly predicted for any x ∈ C. More388

importantly, Lemma 2 (ii) shows that for any classifier ĥ, C is indeed the largest set of inputs for which389

the learner can guarantee to correctly predict the same output as the true classifier θ∗. Thus, in the390

case of A = {0, 1}, E [ρX(Cc)] is the minimum expected loss of confidence set linear classification.391

Next, we study the special case where the input space X is the unit sphere Sd−1, the distribution392

over inputs ρX is uniform over X , and the feature φ(x, 0) = −φ(x, 1) = x/2 ∈ Rd. Then393

ρX(C) = 2ρX(K) is the same as probability that a randomly sampled point on the surface of a394

hemisphere lies in the conical hull of n points sampled uniformly on the surface of the hemisphere.395

Theorem 7. Recall that ρX is the uniform distribution over Sd−1. Then, for sufficiently large N ,396

d3/2

N
√

log(d)
. E [ρX(Cc)] . d3/2 log(d)

N
. (9)

The proof of this result is fairly involved and we defer it to the Appendix. The key approach is to397

represent K in its dual representation and computing the probability in the dual space. The proof398

uses the Poissonization trick and a delicate covering argument to argue concentration in the absence399

of Lipschitzness. Tabular IL corresponds to the confidence set linear classification with orthogonal400

features. There, the minimax risk translates to the expected probability mass on unobserved inputs401

- the missing mass [18] which is in expectation . d/N [22]. The Ω̃(d3/2/N) rate in Theorem 7402

establishes differences between the tabular setting and the linear-expert setting with linear rewards in403

the context of the approach of simulating artificial trajectories.404

5 Conclusion405

We study IL in the presence of µ-recoverability and under linear function approximation. In the406

former case, we establish a separation in the minimax expected suboptimality of learners in the407

no-interaction and active settings. We show upper bounds for BC under the linear expert setting408

and show that this quadratic dependence on H can be broken in the presence of parameter sharing.409

Finally, we study the known transition setting, and introduce a problem known as confidence set410

linear classification which extends the approach of simulating artificial trajectories to the function411

approximation setting. Autonomous decision-making in general can be applied in contexts where the412

societal consequences pertaining to privacy, employment, public health and safety may be negative.413

Such implications, however, are not unique to this particular work.414
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