
Exponentially Improving the Complexity of
Simulating the Weisfeiler-Lehman Test with Graph

Neural Networks

Anders Aamand
MIT

aamand@mit.edu

Justin Y. Chen
MIT

justc@mit.edu

Piotr Indyk
MIT

indyk@mit.edu

Shyam Narayanan
MIT

shyamsn@mit.edu

Ronitt Rubinfeld
MIT

ronitt@mit.edu

Nicholas Schiefer
MIT

schiefer@mit.edu

Sandeep Silwal
MIT

silwal@mit.edu

Tal Wagner∗
Amazon AWS

tal.wagner@gmail.com

Abstract

Recent work shows that the expressive power of Graph Neural Networks (GNNs)
in distinguishing non-isomorphic graphs is exactly the same as that of the
Weisfeiler-Lehman (WL) graph test. In particular, they show that the WL test
can be simulated by GNNs. However, those simulations involve neural networks
for the “combine” function of size polynomial or even exponential in the number
of graph nodes n, as well as feature vectors of length linear in n.
We present an improved simulation of the WL test on GNNs with exponentially
lower complexity. In particular, the neural network implementing the combine
function in each node has only polylog(n) parameters, and the feature vectors
exchanged by the nodes of GNN consists of only O(log n) bits. We also give
logarithmic lower bounds for the feature vector length and the size of the neural
networks, showing the (near)-optimality of our construction.

1 Introduction

Graph Neural Networks (GNNs) have become a popular tool for machine learning on graph-
structured data, with applications in social network prediction [HYL17], traffic prediction [YYZ18],
recommender systems [YHC+18], drug discovery [WKK+20], computer vision [LGD+19,
FLM+19, MBM+17, QSMG17], and combinatorial optimization [CCK+21]. Standard message
passing GNNs use the topology of the input graph to define the network structure: in each step
k, a node aggregates messages from each of its neighbors and combines them using a function
ϕ(k), computed by a neural network, to determine its message for the next round. Crucially, the
aggregation function must be symmetric, to ensure that the output of GNNs is invariant under node
permutation. This restriction raised questions about how expressive such network architectures are,
and in particular what classes of graphs are distinguishable using GNNs.

The seminal works of Xu et al. [XHLJ19] and Morris et al. [MRF+19] (see also [Gro21]) showed that
GNNs are exactly as powerful in distinguishing graphs as the Weisfeiler-Lehman (WL) test [WL68],
also known as color refinement. This combinatorial procedure is a necessary but not sufficient test
for graph isomorphism. It proceeds in repeated rounds: in each round, a node labels itself with the
“hash” of the multiset of labels of its neighbors. The aforementioned papers show that (i) GNNs can
simulate the WL test and (ii) GNNs can only distinguish those graphs that the WL test determines to
be different. This provides a complete characterization of the expressive power of GNN architectures.

∗Work done prior to joining Amazon.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Table 1: Our results compared to prior work on GNNs that simulate the WL test.

Construction Message size Parameters in ϕ(k) Oblivious* Deterministic*

Xu et al. [XHLJ19] O(n) Ω(2n) Yes Yes
Morris et al. [MRF+19] O(n) poly(n) No Yes

This paper O(log n) polylog(n) Yes No

* Oblivious designs use the same weights for any input graph. Non-deterministic constructions require some
weights to be assigned by random samples drawn from some distribution, and may err with small probability.

The connection between GNNs and the WL test has spawned a wave of new results studying GNN
variants that either match the distinguishing power of the WL test or adopt new methods beyond
message passing on the edges of the input graph to overcome this barrier (see the excellent sur-
veys [MFK21, MLM+21, Gro21] for an overview of this area). However, the results in the original
as well the follow up works mostly focus on qualitative questions (how expressive GNNs are)
as opposed to quantitative questions such as the network complexity. In particular, while Xu et
al. [XHLJ19] show that there exist GNN architectures that can simulate the WL coloring procedure
as long as the aggregation step is injective, they rely on the universal approximation theorem to show
that there exists a neural network that can simulate the hash function used in WL. As a result, the
size of the network could be exponential in the number of nodes n. In contrast, the construction of
Morris et al. [MFK21] uses networks of size polynomial in n. However, the weights of the network
implementing ϕ(k) in their construction depend on the structure of the underlying graph, which
suffices for node classification, but is not sufficient for the context of graph classification.

Overall, the quantitative understanding of the complexity of simulating WL remains an open problem.
Indeed, the survey [Gro21] states “The size of the GNNs and related parameters like depth and width,
which directly affect the complexity of inference and learning, definitely require close attention.”

Our Results. The main question addressed in this work is: what is the simplest (in terms of
the number of neural network units and message length) GNN capable of simulating the WL test?
Equivalently, at what point does a GNN become so small that it loses its expressive power?

Our main result is a highly efficient construction of a GNN architecture that is capable of simulating
the WL test. For graphs with n nodes, it can simulate poly(n) steps of the WL test, such that
the neural network implementing ϕ(k) in each round has polylog(n) parameters, and the messages
exchanged by the nodes of the GNN in each round consist of O(log n) bits. This offers at least
an exponential improvement over the prior bounds obtained in [XHLJ19, MRF+19] (see Table 1),
extending the equivalence between the WL test and the expressive power of GNNs to neural networks
of reasonable (in fact, quite small) size. Furthermore, our architecture is simple, using vector sum
for aggregation and ReLU units for the combine function ϕ(k). Finally, our construction can be
generalized to yield a depth-size tradeoff: for any integer t > 0, we can can construct a neural
network of depth O(t) and size nO(1/t) polylog(n).

To achieve this result, our construction is randomized, i.e., some weights of the neural networks are
selected at random, and the simulation of the WL test is correct with high probability 1− 1/poly(n).
Thus, our construction can be viewed as creating a distribution over neural networks computing
the function ϕ(k).2 In particular, this implies that, for each graph, there exists a single neural
network implementing ϕ(k) that accurately simulates WL on that graph. The size of the network is
exponentially smaller than in [MRF+19], although the construction is probabilistic.

We complement this results with two lower bounds for executing a WL iteration. Our first lower
bound addresses the communication complexity of this problem, and demonstrates that to solve it,
each node must communicate labels that are at least O(log n) bits long, matching the upper bound
achieved by our construction. Our second lower bound addresses the computational complexity,

2Note that selecting ϕ(k) at random is quite different from random node initialization, e.g., as investigated
in [ACGL21]. In particular, in our model all nodes use the same function ϕ(k) (with the same parameters),
without breaking the permutation invariance property of GNNs, as in the standard GNN model.

2

namely the parameters of the neural network. It shows that if the messages sent between nodes
are vectors with entries in [F] = {0, 1, . . . , F − 1}, then the network implementing ϕ(k) must use
Ω(logF) ReLU units.

Related work. The equivalence between the discriminative power of GNNs and the WL test
has been shown in the aforementioned works [XHLJ19, MRF+19]. A strengthened version of the
theorem of [XHLJ19], where the same combine function ϕ is used in all iterations (i.e., ϕ = ϕ(k) for
all k) appeared in the survey [Gro21]. Many works since have studied various representational issues
in GNNs; we refer the reader to excellent surveys [Gro21, HV21, MLM+21, Jeg22]. In particular,
[Lou19] established connections between GNNs and distributed computing models such as LOCAL
and CONGEST, and derived lower bounds for several computational tasks based on this connection.
[CVCB19] drew a connection between the expressiveness of GNNs in graph isomorphism testing and
in function approximation. [BKM+20] studied the expressiveness of GNNs in computing Boolean
node classifiers, and [GMP21] studied the expressiveness of graph convolutional networks (GCNs).

The emergence of WL as a barrier in GNN expressivity has also led to a flurry of work on enhanc-
ing their expressivity by means of more general architectures. These include higher-order GNNs
inspired by higher-dimensional analogs of WL [MRF+19, MBHSL19], unique node identifiers
[Lou19, VLF20], random node initializations [ACGL21, SYK21], relational pooling [MSRR19],
incorporating additional information on the graph structure [NM20, BGRR21, BFZB22, CMR21,
TRWG21], and more. We refer to [MLM+21] for a comprehensive survey of this line of work.

1.1 Preliminaries

Notation. For the rest of the paper, we use N (v) to denote the neighborhood of v in a graph
G(V,E) including v itself, and we use {·} to denote multisets rather than sets.

GNNs. Let G = (V,E) be a graph with N nodes. GNNs use the graph structure of G to learn
node embeddings for all the nodes across multiple iterations. Let h(k)

v denote the embedding vector
of node v ∈ V in the kth iteration. The vectors h

(0)
v represent the initial node embeddings. In

every iteration k ≥ 1, each node v sends its current embedding h
(k−1)
v to all its neighbors, and then

computes its new embedding hk
v by the equation

h(k)
v = ϕ(k)

(
f
({

h(k−1)
w : w ∈ N (v)

})
, h(k−1)

v

)
(1.1)

where ϕ(k) is implemented by a neural network with ReLU activations (note that ϕ(k) may differ
across different iterations k). The function f is called the ‘aggregate’ function, and ϕ(k) is called the
‘combine’ function. The embeddings h(K)

v at the final iteration K can be used for node classification.
For graph classification, they can be aggregated into a graph embedding hG with a ‘readout’ function,

hG = READOUT({h(L)
v | v ∈ V }).

Weisfeiler-Lehman (WL) Test. The WL test [WL68] is a popular heuristic for the graph isomor-
phism problem. While the exact complexity of this problem remains unknown [Bab16], the WL test
is a powerful heuristic capable of distinguishing a large family of graphs [BK79].

The WL test is as follows. Given a graph G(V,E), initially all nodes are given the same fixed label
ℓ
(0)
v , say ℓ

(0)
v = 1 for all v ∈ V . Then, in every iteration k ≥ 1, each node v is assigned the new

label ℓ(k)v = HASH({ℓ(k−1)
u : u ∈ N (v)}), where HASH is a 1-1 mapping (i.e., different multisets

of labels are guaranteed to be hashed into distinct new labels). Performing this procedure on two
graphs G,G′, the WL test declares them non-isomorphic if the label multiset {ℓ(k)v : v ∈ V } differs
between the graphs at some iteration k. Note that the algorithm converges within at most n iterations.

Simulating WL with GNNs. A GNN simulates WL deterministically if the node embeddings
h
(k)
v at each iteration k constitute valid labels ℓ

(k)
v for the WL test. We also consider randomized

simulation, where the GNN’s weights are selected at random and we allow some small failure
probability where distinct multisets of labels from iteration k − 1 are hashed into the same label at
iteration k. This is captured by the next definition.

3

Definition 1.1 (Successful Iteration of the WL Test). A WL iteration gets existing labels {hv : v ∈
V } for all nodes, and outputs new labels {h′

v : v ∈ V } given by
h′
v = ϕ (f ({hw : w ∈ N (v)})) ,

for an aggregate function f and neural network ϕ with random weights. We say the iteration is
successful if for all v, u ∈ V , the following holds:

• If {hw : w ∈ N (v)} = {hw : w ∈ N (u)} then h′
v = h′

u with probability 1, and

• If {hw : w ∈ N (v)} ≠ {hw : w ∈ N (u)} then h′
v ̸= h′

u with probability 1− p,

where the probability is over the choices of the random weights of ϕ.

To ensure the WL simulation is successful across poly(n) iterations and for all pairs of nodes, we
can set failure probability p to 1/poly(n) and apply a union bound (see Prop. A.1 in Appendix A).

1.2 Overview of Our Techniques

In this section we give an overview of our GNN architectures for simulating WL. To explain our
ideas in stages, we begin with a simpler construction of a polynomial size GNN. It is far larger than
the ultimate polylogarithmic size we are aiming for, but forms a useful intermediate step toward our
second and final construction.

Construction 1 (Section 2). Recall that the kth WL iteration, for a node v, aggregates the labels
of its neighbors from the previous iteration, H(k−1)

v := {h(k−1)
w : w ∈ N (v)}, and hashes them

into a new label h(k)
v for v. Our GNNs aggregate by summing, i.e., they sum H(k−1)

v into S(k)
v :=∑

w∈N (v) h
(k−1)
w , and then hash the sum into h

(k)
v using a ReLU neural network of our choice.

If two nodes u, v satisfy H(k−1)
u ̸= H(k−1)

v , then WL assigns them distinct labels in iteration k, and
therefore we want our construction to satisfy h

(k)
u ̸= h

(k)
v with probability at least 1 − p (as per

Definition 1.1). This can fail in two places: either due to summing (if S(k)
u = S(k)

v even though
H(k−1)

u ̸= H(k−1)
v) or due to hashing (if h(k)

u = h
(k)
v even though S(k)

v ̸= S(k)
v). To avoid the first

failure mode (summing), we use one-hot encodings for the node labels, meaning that for every node
v and iteration k, h(k)

v is a one-hot vector in {0, 1}F (for F to be determined shortly). This ensures
that if H(k−1)

u ̸= H(k−1)
v then S(k)

u ̸= S(k)
v due to the linear independence of the one-hot vectors.

To handle the second failure mode (hashing), we use random hashing into F = O(1/p) buckets,
rendering the collision probability no more than p. That is, we let h(k)

v = One-Hot(g(S(k)
v)) where

g : ZF → {1, . . . , F} is chosen at random from an (approximately) universal hash family. We use
the simple hash function g(x) = ⟨a, x⟩ mod F where a is random vector. It can be implemented
with a ReLU neural network, since the dot product is just a linear layer, and the mod operation can
be implemented with constant width and logarithmic depth, by a reduction to the “triangular wave”
construction due to Telgarsky [Tel16] (see Appendix B.1). Finally, we show that turning the index
of the hash bucket into a one-hot vector can be done with O(F) ReLU units and constant depth.

Since our desired collision probability is p = 1/poly(n), we set F = O(1/p) = poly(n). Since our
one-hot vectors are of dimension F , the resulting GNN has width F = poly(n) (and depth O(log n)
due to implementing the mod operation with ReLUs), and thus total size poly(n).

Construction 2 (Section 3). We now proceed to describe our polylogarithmic size construction.
The weak point in the previous construction was the wasteful use of one-hot encoding vectors, which
caused the width to be F . In the current construction, we still wish to hash into F bins — that is, to
have F distinct possible labels in each iteration — but we aim to represent them using bitstrings of
length O(logF), thus exponentially improving the width of the network. That is, for every node v

and iteration k, the label h(k−1)
v would now be a vector in {0, 1}O(logF). The challenge is again to

avoid the two failure modes above, ensuring that the failure probability does not exceed p. Since we
cannot use one-hot encoding, we need to devise another method to avoid the first failure mode, i.e.,
ensure that with high probability S(k)

u ̸= S(k)
v if H(k−1)

u ̸= H(k−1)
v .

To this end, suppose for a moment that we had access to a truly random vector a ∈ {0, 1}F . Then
each node v, instead of sending the one-hot encoding of its label h(k−1)

v , we could instead send

4

h
(k−1)
u1

h
(k−1)
u|N(v)|

∑
w∈N (v) h

(k−1)
w

...

ind1

indd

ind2

sum... lin mod

Figure 1: Constructions of our GNNs. Construction 1 (section 2): The layer “sum” sums the input
vectors {h(k−1)

w : w ∈ N (v)}. “lin” is a linear layer that computes the dot product with a random
vector and outputs a single scalar. “mod” is a neural network that computes the input scalar modulo
F , using Theorem 2.2. Each “indi” is a neural network that outputs 1 if its input equals i and outputs
0 otherwise, using eq. (2.1). The ith coordinate of the output vector h(k)

v equals the output of indi.
Construction 2 (section 3): Similar, except that now each indi is a neural network that gets an input
integer j ∈ [F] and outputs the jth coordinate of a vector ai sampled from an ϵ-biased space, using
Theorem C.1. This reduces the total number of units of the network from poly(n) to polylog(n).

the dot product ⟨a, h(k−1)
v ⟩, which is the single bit a

h
(k−1)
v

. Each node u thus receives the bits{
a
h
(k−1)
w

: w ∈ N (w)
}

from its neighbors and aggregates them into the sum
∑

w∈N (u)⟨a, h
(k−1)
w ⟩,

which, by linearity, is equal to ⟨a,S(k)
u ⟩ (using the notation from Construction 1). It is easy to observe

that if S(k)
u ̸= S(k)

v then ⟨a,S(k)
u ⟩ ̸= ⟨a,S(k)

v ⟩ with probability at least 0.5. Repeating this process
logF independent times decreases the collision probability to the requisite 1/F . Thus, we can define
a new labeling scheme h̄

(k)
v ∈ {0, 1}logF that concatenates logF dot products with independent

random vectors a1 . . . alogF ∈ {0, 1}F as just described, failing at the summing operation with
probability at most 1/F . The second failure mode (hashing) can again be handled as before.

That catch is that, since a has length F , the overall number of parameters in the GNN would again
be at least F . To avoid this, we appeal to the computational theory of pseudorandomness. The
idea is to replace the random vector a with an efficient pseudorandom analog. Note that the above
approach goes through even if the probability that ⟨a,S(k)

u ⟩ ̸= ⟨a,S(k)
v ⟩ is slightly larger than 0.5,

say 0.5 + ϵ for a small constant ϵ. It is well-known in complexity theory that there exist pseudo-
random generators, called ϵ-biased spaces, that generate vectors a satisfying this property given only
O(logF + log(1/ϵ)) truly random bits.3 Crucially, each bit of a can be computed using a threshold
circuit with size polynomial in O(logF + log(1/ϵ)) and constant depth (Theorem C.1), which
translates to a ReLU neural network with the same parameters (Lemma C.2). Using these generators
in our GNN to implement a pseudorandom (ϵ-biased) analog of a yields our final construction.

2 First Construction: Polynomial-size GNN

Our first construction towards Definition 1.1 is exponentially larger compared to our final optimized
construction of Section 3. Nevertheless, it is instructive and motivates our optimized construction.

Let h(k)
u denote the label of a vertex u in the kth iteration. For our first construction, we will always

maintain the invariant that h(k)
u will be a one-hot encoded vector in {0, 1}F for all u ∈ V and all

iterations k. F > 2n will be a prime which also satisfies F = O(poly(n)). As stated previously, the
aggregate function f will just be the sum function. Our construction for the neural network used in
the kth iteration, ϕ(k), will take in the sum of the neighbors labels according to Equation (1.1) and
output a one-hot encoded vector in {0, 1}F .

3Technically, they guarantee this property only when S(k)
u are binary vectors, but Lemma 3.2 shows how to

extend this property to general integer vectors as well.

5

Implementation of Neural Network. Our construction for ϕ(k) is the following: First recall the
notation from (simplified) Equation 1.1:

h(k)
v = ϕ(k)

(
f
({

h(k−1)
w : w ∈ N (v)

}))
.

1. For every node v, the input to ϕ(k) is the sum of feature vectors of neighbors from the prior
iteration,

∑
w∈N (v) h

(k−1)
w , which is returned by the summing function f . Given any such input

x ∈ ZF , ϕ(k) computes the inner product of x with a vector a ∈ ZF where each entry of a is a
uniformly random integer in [F] := {0, . . . , F − 1}.

2. ϕ(k) then computes ⟨x, a⟩ mod F .
3. Finally, we represent the value of z = ⟨x, a⟩ as a one-hot encoded vector in ZF where the z-th

entry is equal to 1 and all other entries are 0’s.

Altogether, ϕ(k) can be summarized as: h(k)
v = One-Hot

(〈∑
w∈N (v) h

(k−1)
w , a

〉
mod F

)
.

Note that we set the initial labels h
(0)
u to be the same starting vector for all vertices (any one-

hot vector). This matches the WL test which also initializes all nodes with the same initial label.
Furthermore, the weights of ϕ(k) are independent: the random vector a is sampled independently for
each iteration.

Correctness of Construction. The following lemma proves that the above construction satisfies
the requirement of Definition 1.1. Its proof is given in Appendix B.

Lemma 2.1. Let {h(k−1)
w : w ∈ N (v)} and {h(k−1)

w : w ∈ N (u)} denote the multiset of neighbor-
hood labels for vertices v and u respectively. If the multisets are distinct then the labels computed
for v and u in the kth iteration are the same with probability at most O(1/F). If the multisets are
the same then the labels are the same, i.e., the kth iteration is successful according to Definition 1.1.

Complexity of the GNN. We now evaluate the size complexity of implementing our construction
via a neural network ϕ. Note that Step 1 of the construction can be done with 1 layer as it simply
involves taking an inner product. The main challenge is to implement the modulo function. We give
the following construction in Section B.1 of the appendix.
Theorem 2.2. Suppose F = poly(n). There exists an explicit construction of a network which
computes modulo F in the domain {0, . . . , nF} using a ReLU network with O(log n) hidden units
and O(log n) depth. More generally, given an integer parameter t > 0, the function can be computed
with O((Fn)O(1/t) log n) hidden units and O(t) depth.

Directly appealing to the theorem above, we can implement modulo F required in Step 2 of the
construction using a neural network with O(log n) units, depth O(log n). In addition, we need only
O(log n) bits to represent the weights.

Finally, Step 3 of our construction requires outputting a one hot encoding. We can do this by inputting
z (the output of Step 2 of the construction) into F indicator functions, each of which detect if z is
equal to a particular integer in [F]. Each indicator function can be implemented via O(1) ReLU
nodes as follows. Let

g(x) = ReLU(min(−ReLU(2x− 1/2) + 1,ReLU(2x+ 1))) (2.1)

which can be easily implemented as a ReLU network. (Note min(a, b) = a + b − max(a, b) and
max(a, b) = max(a− b, 0)+ b = ReLU(a− b) + b.) It can be checked that g(0) = 1 and g(x) = 0
for all other integers x ̸= 0 and that g can be implemented with O(1) ReLU function compositions.
Thus, Step 3 of the construction requires O(1) hidden layers and O(F) total hidden units. Altogether
we have proven the following result.
Theorem 2.3. There exists a construction of a neural network ϕ which performs a successful iteration
according to Definition 1.1 with failure probability p = O(1/|F |). ϕ has depth O(log n), O(F)
hidden units, and requires O(log(nF)) bits of precision. Furthermore, all labels in all iterations are
vectors in {0, 1}F . More generally, given an integer parameter t > 0, the function can be computed
with nO(1/t) polylog(n) hidden units and O(t) depth.

6

Remark 2.4. In the standard WL test, the number of iterations is chosen to be O(n). Thus the right
setting of F in Theorem 2.3 is F = O(poly(n)) which gives us depth O(log n), O(poly(n)) hidden
units, and requires O(log n) bits of precision in addition to labels in dimension O(poly(n)).

3 Second Construction: Polylogarithmic-size GNN via Pseudo-randomness

We now present a more efficient construction of a GNN which simulates the WL test with an
exponential improvement in the number of hidden units and label size. To motivate the improvement,
we consider Step 3 of the prior construction which outputs a one-hot encoding. The one-hot encoding
was useful as it allowed us to index into a uniformly random vector a (which we then sum over mod
F in order to hash the neighborhood’s labels). However, this limited us to use feature vectors of a
large dimension and required many hidden units to create one-hot vectors. Instead of working with
one-hot encodings as an intermediary, we will directly compute the entries of the random vector
a as needed. This has two advantages: we can significantly reduce the dimension of the feature
vectors as well as reduce the total size of the neural networks used. We accomplish this via using
pseudo-random vectors whose entries can be generated as needed with a small ReLU neural network
(see Corollary 3.3). This allows us to use node labels in dimension O(log n) as opposed to O(n).

The random vectors we employ have their entries generated from an ε-biased sample space. These are
random vectors which are approximately uniform and they have been well-studied in the complexity-
theory literature. We recall some definitions below.
Definition 3.1 (Bias). Let X be a probability distribution over {0, 1}m. The bias
of X with respect to a set of indices I ⊆ {1, . . . ,m} is defined as biasI(X) =∣∣Px∼X

[∑
i∈I xi = 0

]
− Px∼X

[∑
i∈I xi = 1

]∣∣ where each sum is taken modulo 2 and the empty
sum is defined to be 0.
Definition 3.2 (ε-biased Sample Space). A probability distribution over {0, 1}m is called an ε-biased
sample space if biasI(X) ≤ ε holds for all non-empty subsets I ⊆ {1, . . . ,m}.

Note that the uniform distribution has bias 0. We now state our construction for the neural network
used in the kth iteration, ϕ(k). We recall that h(k)

u denotes the label of a vertex u in the kth iteration.

Implementation of Neural Network. Our construction for ϕ(k) is the following:

1. The input vectors of ϕ(k), which are of the form h
(k−1)
v for the kth iteration, are each assumed to

be a feature vector in ZC logn for a sufficiently large constant C. The output of ϕ(k) will also be
a feature vector in ZC logn. Our aggregation function f will again be the summation function.

2. Let F be a prime of size poly(n) which is at least 2n.

3. For each node v, ϕ(k) computes zv = ⟨b,
∑

w∈N (v) h
(k−1)
w ⟩ mod F where every entry of b is

uniformly random in {0, . . . , F − 1}. Note
∑

w∈N (v) h
(k−1)
w is the output of the aggregation f .

4. Let at ∈ {0, 1}F for t = 1, . . . , C log n be vectors which are independently drawn from an
ε-biased sample space for a sufficiently small constant ε.

5. The output h(k)
v will be a C log n dimensional binary vector where the t-th coordinate is equal to

the zv-th coordinate of the vector at. In other words, h(k)
v = (at(zv))

C logn
t=1 where at(zv) denotes

the zv-th coordinate of at.

Correctness of Construction. We now prove the correctness of our construction. We will refer
to zv computed in Step 3 of the construction as the index of v for the kth iteration. To prove
the correctness of the above construction, it suffices to prove the lemma below which shows our
construction satisfies Definition 1.1.
Lemma 3.1. Let {h(k−1)

w : w ∈ N (v)} and {h(k−1)
w : w ∈ N (u)} denote the multiset of neighbor-

hood labels for vertices v and u respectively. If the multisets are distinct then the labels computed
for v and u in the kth iteration are distinct with probability 1− 1/ poly(n). If the multisets are the
same then the labels are the same, i.e., the kth iteration is successful according to Definition 1.1.

We first need the following auxiliary lemma about ε-biased sample spaces, proven in Section C.

7

Lemma 3.2. Let D be a probability distribution over {0, 1}m that is an ε-biased sample space. Then,
for any x, y ∈ Zm such that x ̸= y, Pa∼D[⟨a, x⟩ = ⟨a, y⟩] ≤ 1

2 + ε
2 .

Note that this lemma is necessary, as we will be computing dot products of a with integer vectors
(over integers), not with binary vectors modulo 2.

We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. Let x′ =
∑

w∈N (v) h
(k−1)
w denote the input for v and analogously, define

y′ =
∑

w∈N (u) h
(k−1)
w to be the input for u. We first show that if {h(k−1)

w : w ∈ N (v)} is not equal

to (as multisets) {h(k−1)
w : w ∈ N (u)} then x′ ̸= y′ with sufficiently large probability. We further

consider the case that k ≥ 2 since for k = 1 (the first iteration), the statement follows since all node
labels are initialized to be the same. Let z′v be the indices computed in Step 3 of iteration k − 1

(which are used to construct the node labels h(k−1)
v in iteration k − 1). Note that there is a one to

one mapping between z′v and h
(k−1)
v . Thus we can assume {z′w : w ∈ N (v)} ≠ {z′w : w ∈ N (u)}

without loss of generality.

Let ã1 be the first ε-biased vector used in the previous neural network ϕ(k−1). Note that the first
entry of x′ is equal to

∑
w∈N (v) ã

1(zw), i.e., it is the dot product of ã1 with a suitable vector x
which is the sum of one-hot encoding of the neighborhood of v. The same statement is true for y′:
the first entry of y′ is equal to the dot product of ã1 with a vector y which represents the one-hot
encoding of the neighborhood of u. This is because we computed the index z′v of every node in
the previous iteration, as defined in Step 3 of the construction, and passed along the coordinate of
ã1 which corresponds to this computed index. By assumption, we know that x ̸= y. Therefore by
Lemma 3.2, we have that Pã1 [(x′)1 = (y′)1] = Pã1(⟨ã1, x⟩ = ⟨ã1, y⟩) ≤ 2/3 for a suitable ε. By
independence of vectors ãt, it follows that P[x′ = y′] ≤ (2/3)C logn ≤ 1/ poly(n) for a suitable
constant C > 0.

We now condition on x′ ̸= y′. Without loss of generality, suppose that their first coordinates, x′
1

and y′1, differ. We know x′
1 ̸= y′1 mod F since x′

1 ̸= y′1, they are both non-negative and bounded
by n, and |x′

1 − y′1| ≤ O(n) whereas F is a prime at least 2n. It follows that the probability of the
event ⟨(x′ − y′), b⟩ = 0 mod F is at most 1/F . To see this, condition on all the entries of b except
b1. Then (x′ − y′)1 · b1 must be equal to a specific value modulo F for ⟨(x′ − y′), b⟩ = 0 mod F to
hold, as desired. We now condition on this event which equivalently means we condition on zv ̸= zu
(see Step 3 of the construction).

Now our task is to show that h(k)
v ̸= h

(k)
u with sufficiently high probability. The first coordinate of

h
(k)
v is equal to ⟨a1, ezv ⟩ where a1 is the first ε-biased vector considered in Step 4 of the construction

and ezv is the basis vector in dimension C log n which has a 1 entry only in the zv coordinate and
0 otherwise. Therefore by Lemma 3.2, we have that , Pa1 [(h

(k)
v)1 = (h

(k)
u)1] = Pa1 [⟨a1, ezv ⟩ =

⟨a1, ezu⟩] ≤ 2/3 for a suitable choice of ε since ezu and ezv are distinct. By independence of vectors
at, it follows that P[h(k)

v = h
(k)
u] ≤ (2/3)C logn ≤ 1/ poly(n) for a suitable constant C > 0. This

exactly means that the node labels of u and v in the next iteration are different with probability at
least 1 − 1/ poly(n), as desired. Lastly, it is clear that if the multiset of neighborhood labels of u
and v are the same, then x′ = y′ and it’s always the case that h(k)

v = h
(k)
u .

Complexity of the GNN. We now analyze the overall complexity of representing ϕ(k) as a ReLU
neural network. First we state guarantees on generating ε-based vectors using a ReLU network. The
following corollary is proven in Appendix C.

Corollary 3.3. Let s = O(logF + log(1/ε)). For every ε and F , there exists an explicit ReLU
network C : {0, 1}s∪ [F] → {0, 1}F which takes as input s uniform random bits and an index i ∈ F
and outputs the ith coordinate of an ε-biased vector in {0, 1}F . C uses O(logF) bits of precision
and has poly(s) hidden units. More generally, given an integer parameter t > 0, the function can
be computed with nO(1/t) polylog(n) hidden units and O(t) depth.

We can now analyze the complexity of our construction. The complexity can be computed by
analyzing each step of the construction separately as follows:

8

1. For every node v, the sum of feature vectors of neighbors from the prior iteration,∑
w∈N (v) h

(k−1)
w , is returned by the aggregate function f .

2. The inner product with the random vector b in Step 3 of the construction can be computed using
one layer of the network. Then computing modulo F can be constructed via Theorem 2.2.

3. Given the inner product value zv which is the output of Step 3 of the construction, we compute all
of the O(log n) coordinates of h(k)

v in parallel. We recall that each coordinate of h(k)
v is indexing

onto O(log n) ε-biased random vectors and we use the same index for all vectors, namely the
zv-th index. This can be done as follows. We first have O(log n) edges fanning-out from the
node which computes zv . For all t = 1, . . . , O(log n), the other endpoint of the t-th fan-out edge
computes the value at(zv) where at is the t-th ε-biased vector as stated in Steps 4 and 5 of the
construction. This can be done by appealing to the construction guaranteed by Corollary 3.3. The
result of this computation is exactly h

(k)
v .

Altogether, we have proven the following theorem.
Theorem 3.4. There exists a construction of ϕ which performs a successful WL iteration according to
Definition 1.1 with p ≤ 1/ poly(n). ϕ has depth O(log n), O(poly(log n)) hidden units, and requires
O(log n) bits of precision. All labels in all iterations are binary vectors in {0, 1}O(logn). More
generally, given an integer parameter t > 0, the function can be computed with nO(1/t) polylog(n)
hidden units and O(t) depth.

4 Lower Bounds

We complement our construction with lower bounds on the label size and number of ReLU units
required to simulate the WL test. We outline these two lower bounds below and defer the full details
to Appendix D.

Message Size. Recall that in our construction, the message (label) size was O(log n) bits. Via
communication complexity, we give a corresponding lower bound. In particular, we construct a
graph on which any (randomized) communication protocol which simulates WL as in Definition 1.1
must send at least Ω(log n) bits along one edge of the graph. As message-passing GNNs are a
specific class of communication protocols, this immediately implies that the message sizes must
have Ω(log n) bits, so our construction is optimal in that respect.

The hard instance is formed by a graph which is a collection of disjoint star subgraphs of sizes
ranging from 2 to Θ(

√
n). In order to perform a valid WL coloring, each node must essentially

learn the size of its subgraph, requiring Ω(log(
√
n)) = Ω(log n) bits of communication. In addition,

this must be done in only 2 iterations as the depth of each subgraph is 2, so some node must send
Ω(log n) bits to its neighbors in a single round. See Appendix D.1 for the full details and proof.

Number of ReLU Units. In order to show a lower bound on the number of units needed to
implement a successful WL iteration, we rely on prior work lower bounding the number of linear
regions induced by a ReLU network (for instance [MPCB14]). In particular, these works show that
ReLU networks induce a partition of the input space into N convex regions (where N is a function of
the size of the network) such that the network acts as a linear function restricted to any given region.
Using these results, we describe a fixed graph and a distribution over inputs to the neural network
S
(k−1)
u for all u ∈ V (sums of the labels from the previous round) which includes O(F) potential

special pairs of nodes (where F is defined such that inputs S(k−1)
u ∈ [F]t for some t). For each such

pair u, v, their neighborhoods N(u), N(v) have different multisets of inputs, but both multisets of
inputs sum to the same value. We show that if the number of linear regions is small, N = o(F),
then it is relatively likely that u, v will be in the same linear region and thus their sums will collide:
S
(k)
u = S

(k)
v even while their neighborhoods had distinct inputs in the (k − 1)st round.

This immediately gives a Ω(logF) lower bound on the number of ReLU units (and thus number of
parameters) with more refined depth/width tradeoffs given in Appendix D.2.1. Note that F is the
size of each coordinate in the sum of labels. Even if the labels are binary, F can be as large as n,
depending on the max degree in the graph, which implies a Ω(log n) lower bound on the number of
ReLU units. See Appendix D.2 for full details and proof.

9

5 Experiments

To demonstrate the expressivity of our construction, i.e., that our small-sized GNN reliably simulates
the WL test, we perform experiments on both synthetic and real world data sets. Common to all of
our experiments is that we start with some graph G = (V,E) (either real world or generated with
respect to some probability distribution). We then simulate a perfect run of the WL test on G where
any two nodes which receive different multisets of labels in iteration k − 1 get distinct labels in
iteration k with probability 1 as well as a run of our construction from4 Section 3. At any point in
time, the node labels induce partitions of V where two nodes are in the same class if they have the
same labels. Denote the partitions after k-iterations using the perfect simulation and our construction
respectively by Pk and P ′

k. Letting k0 be minimal such that Pk0−1 = Pk0
(at which point the WL

labels have converged), we consider the implementation using our GNN successful if Pk = P ′
k for

all k ≤ k0, i.e., if the the simulation using our implementation induced the same partitions as a
perfect runs. For all of our experiments it turned out that k0 ≤ 5 (see [BK22] for a discussion of this
fast convergence).

102 103

n

10
12
14
16
18
20
22
24

M
es

sa
ge

 S
ize

 (b
its

)

Sparse Erdos Renyi Graphs
3log(n)
Results

(a)

102 103

n

6

8

10

12

14

16

18

M
es

sa
ge

 S
ize

 (b
its

)
Scale Free Graphs

2.3log(n)
Results

(b)

15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0
Message Size (bits)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 S

uc
ce

ss

Cora Graph

(c)

Figure 2: Plots of our experimental results on Erdős-Rényi graphs, scale free graphs, and the real
world Cora graph. The vertical blue lines in (a) and (b) are the empirical standard deviations over
the 5 independent samples of random graphs. Note that the x-axes in (a) and (b) are logarithmic.

Sparse Erdős-Rényi Graphs We generated Erdős-Rényi random graphs G(n, p) with p = 20/n
for a varying number of vertices n. For each value of n, we generated five such graphs and for each
of these five graphs, we ran 10 independent trials of our GNN implementation with message sizes
t = 1, 2, Averaging over the five graphs, we report the minimal t such that at least 70% of the
10 iterations successfully simulated the WL test. See Figure 2a. The average message size needed
to achieve this is approximately 3 log n where the logarithmic dependence on n is as predicted
theoretically and significantly improves on the linear message size required for prior constructions.

Scale Free Graphs We generated samples of the scale free graphs from [BBCR03] with a varying
number of vertices n using the implementation from [HSS08]. Our experiment design was the same
as for Erdős-Rényi random graphs. See Figure 2b.

Cora Graph We finally ran experiments on the real world graph Cora5 which is the citation network
of n = 2708 scientific publications. We simulated our GNN with varying message lengths, for each
message length reporting the fraction of successful runs of 30 independent trials. See Figure 2c for a
plot of the results. We see that with message length 35, all of the 30 trials successfully simulated the
WL test.

Acknowledgements Anders Aamand is funded by DFF-International Postdoc Grant 0164-00022B
from the Independent Research Fund Denmark. This research was also supported by the NSF
TRIPODS program (award DMS-2022448), NSF award CCF-2006664, Simons Investigator Award,
MIT-IBM Watson AI Lab, GIST- MIT Research Collaboration grant, NSF Graduate Research Fel-
lowship under Grant No. 1745302, and MathWorks Engineering Fellowship.

4Since our goal is to test whether our protocol correctly simulates WL test with small messages, we are not
implementing the actual GNNs but instead we are simulating their computation. Further, for simplicity, we
replaced the ε-biased sample space with a random string, which guarantees ε = 0.

5https://graphsandnetworks.com/the-cora-dataset/

10

References
[ACGL21] Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The

surprising power of graph neural networks with random node initialization. In IJCAI,
2021.

[Bab16] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, pages 684–697, 2016.

[BBCR03] Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver Riordan. Directed scale-
free graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’03, page 132–139, USA, 2003. Society for Industrial and
Applied Mathematics.

[BFZB22] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Im-
proving graph neural network expressivity via subgraph isomorphism counting. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

[BGRR21] Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural
networks with local graph parameters. Advances in Neural Information Processing
Systems, 34, 2021.

[BK79] László Babai and Ludik Kucera. Canonical labelling of graphs in linear average time.
In 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), pages
39–46. IEEE, 1979.

[BK22] Franka Bause and Nils M. Kriege. Gradual weisfeiler-leman: Slow and steady wins
the race. CoRR, abs/2209.09048, 2022.

[BKM+20] Pablo Barceló, Egor Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-
Pablo Silva. The logical expressiveness of graph neural networks. In 8th International
Conference on Learning Representations (ICLR 2020), 2020.

[CCK+21] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris,
and Petar Veličković. Combinatorial optimization and reasoning with graph neural
networks. IJCAI, 2021.

[CMR21] Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful
graph representations. Advances in Neural Information Processing Systems, 34, 2021.

[CVCB19] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence
between graph isomorphism testing and function approximation with gnns. Advances
in neural information processing systems, 32, 2019.

[FLM+19] Matthias Fey, Jan E Lenssen, Christopher Morris, Jonathan Masci, and Nils M Kriege.
Deep graph matching consensus. In International Conference on Learning Represen-
tations, 2019.

[GMP21] Floris Geerts, Filip Mazowiecki, and Guillermo Perez. Let’s agree to degree: Compar-
ing graph convolutional networks in the message-passing framework. In International
Conference on Machine Learning, pages 3640–3649. PMLR, 2021.

[Gro21] Martin Grohe. The logic of graph neural networks. In 2021 36th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–17. IEEE Computer Society,
2021.

[HSS08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod
Millman, editors, Proceedings of the 7th Python in Science Conference, pages 11 – 15,
Pasadena, CA USA, 2008.

[HV06] Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in finite
fields of characteristic two. In Annual Symposium on Theoretical Aspects of Computer
Science, pages 672–683. Springer, 2006.

11

[HV21] Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman
test and its variants. In ICASSP 2021-2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 8533–8537. IEEE, 2021.

[HYL17] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. Advances in neural information processing systems, 30, 2017.

[Jeg22] Stefanie Jegelka. Theory of graph neural networks: Representation and learning. arXiv
preprint arXiv:2204.07697, 2022.

[LGD+19] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph
matching networks for learning the similarity of graph structured objects. In Interna-
tional conference on machine learning, pages 3835–3845. PMLR, 2019.

[Lou19] Andreas Loukas. What graph neural networks cannot learn: depth vs width. In
International Conference on Learning Representations, 2019.

[MBHSL19] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably
powerful graph networks. Advances in neural information processing systems, 32,
2019.

[MBM+17] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
and Michael M Bronstein. Geometric deep learning on graphs and manifolds using
mixture model cnns. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5115–5124, 2017.

[MFK21] Christopher Morris, Matthias Fey, and Nils M Kriege. The power of the weisfeiler-
leman algorithm for machine learning with graphs. IJCAI, 2021.

[MLM+21] Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege,
Martin Grohe, Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine
learning: The story so far. arXiv preprint arXiv:2112.09992, 2021.

[Mon17] Guido Montúfar. Notes on the number of linear regions of deep neural networks. 2017.

[MPCB14] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the
number of linear regions of deep neural networks. Advances in neural information
processing systems, 27, 2014.

[MRF+19] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-
Order Graph Neural Networks. AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019.

[MSRR19] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Re-
lational pooling for graph representations. In International Conference on Machine
Learning, pages 4663–4673. PMLR, 2019.

[NM20] Hoang Nguyen and Takanori Maehara. Graph homomorphism convolution. In Inter-
national Conference on Machine Learning, pages 7306–7316. PMLR, 2020.

[QSMG17] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 652–660, 2017.

[RPK+17] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein.
On the expressive power of deep neural networks. In international conference on
machine learning, pages 2847–2854. PMLR, 2017.

[STR18] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and
counting linear regions of deep neural networks. In International Conference on
Machine Learning, pages 4558–4566. PMLR, 2018.

[SYK21] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen
graph neural networks. In Proceedings of the 2021 SIAM International Conference on
Data Mining (SDM), pages 333–341. SIAM, 2021.

12

[Tel16] Matus Telgarsky. Benefits of depth in neural networks. In Vitaly Feldman, Alexander
Rakhlin, and Ohad Shamir, editors, Proceedings of the 29th Conference on Learning
Theory, COLT 2016, New York, USA, June 23-26, 2016, volume 49 of JMLR Workshop
and Conference Proceedings, pages 1517–1539. JMLR.org, 2016.

[TRWG21] Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph learning with
1d convolutions on random walks. arXiv preprint arXiv:2102.08786, 2021.

[VLF20] Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equiv-
ariant graph neural networks with structural message-passing. Advances in Neural
Information Processing Systems, 33:14143–14155, 2020.

[WKK+20] Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot,
Thomas Seidel, and Thierry Langer. A compact review of molecular property pre-
diction with graph neural networks. Drug Discovery Today: Technologies, 37:1–12,
2020.

[WL68] Boris Weisfeiler and Andrew Lehman. A reduction of a graph to a canonical form and
an algebra arising during this reduction. Nauchno-Technicheskaya Informatsiya, Ser.
2, no. 9 (1968), 12-16 (in Russian), 1968.

[XHLJ19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[YHC+18] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and
Jure Leskovec. Graph convolutional neural networks for web-scale recommender sys-
tems. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 974–983, 2018.

[YYZ18] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional net-
works: a deep learning framework for traffic forecasting. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence, pages 3634–3640, 2018.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This

paper is focused on fundamental research on graph neural networks with no direct
social impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

13

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A Omitted Proofs of Section 1

Proposition A.1. Let ℓ(T)
v be the labels of nodes after running the WL test for T iterations on an

input graph G with initial labels ℓ(0)v all equal and suppose p ≤ δ/(n2T). Suppose T independent
GNN iterations are successful according to Definition 1.1 and the output labels of iteration i are the
input labels of iteration i + 1 for all i with the initial labels being equal to ℓ

(0)
v . Let h(T)

v denote
the node labels which are the output of the final iteration of the GNN. Then for all v1, v2 ∈ V , the
following statements hold with probability 1− δ:

• If ℓ(T)
v = ℓ

(T)
u then h

(T)
v = h

(T)
u and

• If ℓ(T)
v ̸= ℓ

(T)
u then h

(T)
v ̸= h

(T)
u .

Proof. Consider some iteration i ≤ T . Suppose we have the following guarantee on the node label
inputs for the ith iteration (note the inputs are the output labels of the previous iteration):

• If ℓ(i−1)
v = ℓ

(i−1)
u then h

(i−1)
v = h

(i−1)
u and

• If ℓ(i−1)
v ̸= ℓ

(i−1)
u then h

(i−1)
v ̸= h

(i−1)
u .

Given the guarantee for iteration i−1, we show that the same guarantee is true for the labels outputted
in the ith iteration with probability 1− p. Consider what the WL test does given input labels ℓ(i−1)

v1 :
it assigns the same node labels to all pairs of vertices with the same multiset of neighborhood (input)
labels and different labels for all pairs of vertices with different multiset of neighborhood (input)
labels. This is exactly the same guarantee as Definition 1.1, except we also have to union bound over
all ≤ n2 pairs of nodes in Definition 1.1. Thus, the invariant stated in the beginning of the proof
also holds for the ith iteration with probability 1− n2p. Now applying a union bound across all T
iterations, the total failure probability is n2Tp ≤ δ, as desired.

B Omitted Proofs of Section 2

Proof of Lemma 2.1. Since all vectors h(k)
u are always one-hot encoded vectors, if two nodes have

differing neighborhood multisets of labels, then the sum of the one-hot encoding vectors of each
neighborhoods will also be different. Suppose we are in this case and let y and y′ denote the sum of
the neighborhood labels of v and u respectively. Without loss of generality, suppose y and y′ differ
in the first coordinate, y1 and y′1. Then ⟨a, y−y′⟩ ≡ 0 mod F if and only if a1(y1−y′1) ≡ c mod F

where c =
∑F

i=2 ai(y
′
i − yi). Condition on the event that a1 ̸≡ 0 mod F which happens with

probability 1 − 1/F . We now claim that y′1 − y1 ̸≡ 0 mod F . Indeed, 0 ≤ y1 ̸= y′1 ≤ n so
0 ̸= |y1 − y′1| ≤ n. Since F > 2n, it cannot be the case that y1 − y′1 ≡ 0 mod F which means
that the multiplicative inverse of (y1 − y′1) mod F , denoted as (y1 − y′1)

−1, is well-defined and
unique. Thus for a1(y1 − y′1) ≡ c mod F , we must have a1 ≡ c(̇y1 − y′1)

−1 mod F which happens
with probability O(1/F). Altogether, we have that Pa[⟨a, y⟩ ≡ ⟨a, y′⟩ mod F] ≤ O(1/F), as
desired. Conditioning on ⟨a, y⟩ ̸≡ ⟨a, y′⟩ mod F , we have that h(k)

v ̸= h
(k)
u as their single non-zero

coordinates are distinct. Finally, we can easily check that if the multiset of neighborhoods of u and
v are the same, then h

(k)
v = h

(k)
u always holds.

B.1 Implementation of Modulo F via ReLU Network

We now give an efficient ReLU network construction of the function computing modulo F , thereby
proving Theorem 2.2. First we define the function TWF : {0, . . . , NF} → {0, . . . , F − 1}, also
known as the “triangular wave" function:

TWF (x) = TF (x mod 2F)

where

TF (x) =

{
x, if x ≤ F

2F − x, if x > F.

15

A result of [Tel16] implements the function TWF using low-depth ReLU networks.

Theorem B.1 (Lemma 3.8 and Corollary 3.9 in [Tel16]). Suppose F = poly(n). The function
TWF : {0, . . . , nF} → {0, . . . , F − 1} can be implemented using a neural network with O(log n)
hidden units and O(log n) depth.

We now reduce the modulo F case to the construction of the triangular wave function.

Theorem 2.2. Suppose F = poly(n). There exists an explicit construction of a network which
computes modulo F in the domain {0, . . . , nF} using a ReLU network with O(log n) hidden units
and O(log n) depth. More generally, given an integer parameter t > 0, the function can be computed
with O((Fn)O(1/t) log n) hidden units and O(t) depth.

Proof. Assume without loss of generality that F is odd. Given an integer z ∈ Z, we first compute
TWF (z) and TWF/2(z). Note that even though F/2 is non-integral, we can still compute it.
Looking for a general real number z ∈ [0, 2F], we have that TWF (z) = TWF/2(z) if and only
if z ∈ [0, F/2] or z ∈ [3F/2, 2F]. In addition, if z is an integer in [0, 2F] but not in [0, F/2] ∪
[3F/2, 2F], then TWF (z)−TWF/2(z) ≥ 1. Noting that ReLU(1− ReLU(1− x)) = 0 for x = 0
and ReLU(1− ReLU(1− x)) = 1 for any x ≥ 1, we therefore have that

ReLU(1− ReLU(1− TWF (z) + TWF/2(z)))

equals 0 if z ∈ Z and 0 ≤ (z mod 2F) ≤ (F − 1)/2 or (3F + 1)/2 ≤ (z mod 2F) ≤ 2F − 1, and
equals 1 if z ∈ Z and (F + 1)/2 ≤ (z mod 2F) ≤ (3F − 1)/2. So, if we consider shifting z by
(F − 1)/2, we can make this equal 1 if and only if z is between F and 2F − 1 mod F . Therefore,
for integers z,

ReLU
(
1− ReLU

(
1− TWF

(
z − F − 1

2

)
+TWF/2

(
z − F − 1

2

)))
=

{
0 0 ≤ (z mod 2F) ≤ F − 1

1 F ≤ (z mod 2F) ≤ 2F − 1
.

Now, for simplicity, let us define the function above as g(z). Note that when g(z) = 0, then
TWF (z) = z mod F , and when g(z) = 1, then TWF (z) = F − (z mod F), so z mod F =
F − TWF (z). Therefore, we have that for any integer z, z mod F = |F · g(z) − TWF (z)|. But
note that we can write

|x| = max(x,−x) = max(2x, 0)− x = ReLU(2x)− x.

Therefore, we have that

z mod F = ReLU(2F · g(z)− 2 · TWF (z))− F · g(z) + TWF (z).

C Omitted Proofs for Section 3

Proof of Lemma 3.2. Since ⟨a, x⟩ − ⟨a, y⟩ = ⟨a, x− y⟩, by writing z = x− y ∈ Zm, it suffices to
show that if z is nonzero, then Pa∼D[⟨a, z⟩ = 0] ≤ 1

2 + ε
2 .

Let k represent the largest nonnegative integer such that 2k|zi for all i ∈ [m] := {1, 2, . . . ,m},
and let z′ = z/2k. Then, by replacing z with z′, we have that Pa∼D[⟨a, z⟩ = 0] if and only if
Pa∼D[⟨a, z′⟩ = 0] (since we are just dividing by 2k) and z′i is odd for at least one value of i ∈ [m].
So, it suffices to show that Pa∼D[⟨a, z′⟩ = 0] ≤ 1

2 + ε
2 . Note that by reducing modulo 2, it suffices

to show that over GF2, Pa∼D[⟨a, z′⟩ ≡ 0 mod 2] ≤ 1
2 + ε

2 , because then the probability over the
integers is either the same or lower.

Let I be the subset of i ∈ [m] for which z′i is odd. Note that I is nonempty since we know z′i is odd
for at least one value of i ∈ [m]. So, by the definition of ε-biased sample spaces, we know that over
GF2,

∣∣2 · Pa∈D
[∑

i∈I ai = 0
]
− 1
∣∣ ≤ ε, which means that Pa∈D

[∑
i∈I ai = 0

]
≤ 1

2 + ε
2 . But

indeed
∑

i∈I ai ≡ ⟨a, z′⟩ since i ∈ I precisely when z′i is odd, so this completes the proof.

16

C.1 Proof of Corollary 3.3

We first need to define the circuit class TC0.

Definition C.1 (Threshold Gate). For inputs x1, . . . , xm ∈ {0, 1} the output of a threshold gate, TH,
is

TH(x1, . . . , xm) =

{
1
∑m

i=1 aixi ≥ θ

0 otherwise

where θ, a1, . . . , am ∈ Z. θ, a1, . . . , am may depend on n but they do not depend on the input
x1, . . . , xm.

Definition C.2 (TC0 Circuit Class). TC0 is the class of boolean functions computed by constant-
depth poly(m)-size circuits with threshold gates.

It is known that ε-biased vectors can be generated using an efficient circuit in TC0.

Theorem C.1 (Theorem 14 in [HV06], Restated). Let s = O(logF + log(1/ε)). For every ε and
F , there exists an explicit TC0 circuit C : {0, 1}s ∪ {0, 1}⌈log2F⌉ → {0, 1} which takes as input s
uniform random bits and an index i ∈ [F] and outputs the ith coordinate of an ε-biased vector in
{0, 1}F . C uses poly(s) threshold gates.

Note that the guarantees of Theorem C.1 are not directly applicable since we need to use a ReLU
network instead of threshold gates. Nevertheless, since the circuit C guaranteed by Theorem C.1
has integer inputs in all gates, we can easily approximate each threshold gates using an appropriately
scaled ReLU. This is a straightforward and known reduction but we briefly outline a procedure in
Lemma C.2.

Lemma C.2. Consider the threshold gate TH: {0, 1}m → {0, 1} which computes the threshold∑m
i=1 aixi ≥ θ. Assume that ai, θ are all integers bounded by poly(m). TH can be computed by a

ReLU network using O(logm) bits of precision and a constant number of parameters.

Proof. Consider the function

g(x) = ReLU(−ReLU(−x+ 2)).

It is 0 for all integers x ≤ 0 and 1 for all integers ≥ 1, i.e., it computes the threshold “x ≥ 0”. By
shifting and scaling g, we can now compute the threshold “x ≥ θ” for any integer θ. Finally, the
sum

∑m
i=1 aixi can be computed using one additional layer. Since all parameters are integers, we

only require O(logm) bits of precision to store the shifting and scaling factors.

Lastly, we remark that as per the definition of a threshold gate in Definition C.1, Theorem C.1
requires the index i ∈ [F] to be inputted as a binary string with its bits given on individual nodes.
However, this presents a slight inconsistency with the statement of Theorem C.1 and its corollary,
Corollary 3.3 which is used in the construction of Section 3. Specifically, Step 3 of the construction
of Section 3 outputs the actual integer i ∈ [F] which we use as the index for our ε-biased vector,
which does not match the format required by Theorem C.1. This inconsistency is straightforward to
fix without having any impact whatsoever in the asymptotic size complexity of the neural network.
We simply take the integer i outputted by Step 3 of the construction and compute the jth bit of i for
all 1 ≤ j ≤ O(logF) in parallel. The jth bit is exactly equal to 0 if and only if (i mod 2j+1) < 2j

and 1 otherwise. Note that 2j+1 = O(F) for all j and we can easily compute each mod2j+1 by
appealing to Theorem 2.2. This only requires O(1) extra depth and an additional O(poly(log n))
hidden units and O(log n) bits of precision. The more general trade-off of Theorem 3.4 also readily
holds.

D Lower bounds

In this appendix we provide lower bounds on the complexity of graph neural networks that are able
to simulate the WL test. We present both a communication complexity lower bound and a lower
bound on the number of ReLU units of the GNN. More concretely, in Section D.1, we prove that in
order to maintain the invariant that with at least some constant probability, nodes with isomorphic
neighborhoods get the same label while nodes with non-isomorphic neighborhoods get different

17

u1

v1

w1,1

u′
1

v′1

w′
1,1

u2

v2

w2,1 w2,2

u′
2

v′2

w′
2,1 w′

2,2

· · · · · · · · · · · ·

um

vm

wm,1 wm,2 wm,m· · · · · ·

u′
m

v′m

w′
m,1 w′

m,2 w′
m,m· · · · · ·

Figure 3: The graph G used for Theorem D.1, showing the disconnected pieces
G1, G

′
1, G2, G

′
2, . . . , Gm, G′

m. Note that for all k, Gk and G′
k are isomorphic.

labels, some message sent between nodes must be of length at least Ω(log n). This bound matches
the upper bound of Theorem 3.4. Second, in Section D.2, we consider a more specific although still
fairly general lower bound model which captures the implementation of the WL test using neural
networks. We suppose that the messages sent between nodes are t-dimensional vectors with integral
entries. We moreover suppose that each node combines its received messages by summing them to
get a vector in [F]t (here, [F] = {0, 1, . . . , F − 1}) and applying a collectively agreed upon neural
network ϕ with at most H ReLU units to this sum. We show that if the combination of summing
neighborhoods and applying the neural network maps distinct multisets to distinct elements with
at least some constant probability, then H = Ω(logF). Moreover, parametrizing in terms of the
depth and width of the neural network, we obtain a more fine-grained lower bound, demonstrating
that for shallow neural networks, we need even more ReLU units. In Remark D.5, we point out that
our lower bound holds even if the aggregation function f is itself a neural network with a bounded
number of ReLU units. As a node in an n-node graph could have up to n− 1 neighbours, we need
at least F = Ω(n) in order to store the sum of the messages from the neighbors of the nodes. With
this assumption, the lower bound thus becomes Ω(log n) which matches our upper bound up to
polylog(n) factors. It remains an interesting open problem to bridge the gap between the upper and
lower bound.

For both our lower bounds we assume that the nodes have access to an infinite public string of
random bits. In Section D.2, this is the string which the nodes use to collectively agree on some
neural network network f with respect to some distribution on such networks with at most H ReLU
units.

D.1 Lower Bound: Communication Complexity

We consider a forest graph G composed of pieces G1, G
′
1, G2, G

′
2 . . . , Gm, G′

m, for m = Θ(
√
n).

Each piece Gk consists of a “top” node uk, which is only connected to a “middle” node vk, which
in turn is connected to k “bottom” nodes wk,1, . . . , wk,k, and G′

k is simply a duplicate of Gk (with
vertices u′

k, v
′
k, and w′

k,j for 1 ≤ j ≤ k). See Figure 3 for a depiction of G. We note that after two
rounds, each uk (and u′

k) should know the respective value of k, because the local graph of depth 2
around uk is distinct for each k ∈ [m].
Theorem D.1. Suppose there exists a public random string r that every node of G has access to, and
each node additionally has some independent private randomness. Suppose there is a communication
protocol where by the end, with probability at least 3/4, the following hold.

• For every k ∈ [m], the top nodes uk and u′
k output the same value.

• For every k ̸= ℓ ∈ [m], the top nodes uk, uℓ output distinct values.

Then, there must be some k such that the edge (uk, vk) or the edge (u′
k, v

′
k) has at least Ω(log n)

total bits of communication. Hence, if there are only O(1) rounds of communication, one of those
rounds must have sent Ω(log n) bits of communication across the edge.
Remark D.2. In comparison to Definition 1.1, we note that our lower bound works for p = 1

4m2 =

Θ
(
1
n

)
in Definition 1.1. This is because we require all nodes uk, uℓ to simultaneously have different

outputs with probability at least 3
4 , which is implied by a union bound if every uk, uℓ for k ̸= ℓ have

different outputs with probability at least 1− 1
4m2 . In addition, we actually prove a stronger lower

18

bound against Definition 1.1, because our lower bound holds even if we allow each node to have its
own independent private randomness, and only requires nodes with the same local neighborhood to
output the same answer simultaneously with probability 3/4 instead of probability 1.

Proof. First, we note that we may assume the communication is one-way from vk to uk. This
is because the node vk can simulate all communication from uk, as uk has no information about
neighbors apart from vk. So, we just need to show the one-way communication complexity is
Ω(log n). Next, we will assume there is no public randomness - we will remove this assumption
at the end. So, each uk (resp., u′

k) receives at most b bits of information from vk (resp., v′k). If vk
sends a randomized message of length b to uk and uk uses this message to produce some output ok,
with probability at least 3

4 the outputs ok must all be distinct. In addition, for each k, the outputs
of the duplicate copies of uk must be the same with probability at least 3

4 . Our goal is to show that
b = Ω(log n).

Let f be a randomized function from [m] to {0, 1}b, representing the randomized message vk sends
to uk assuming it has full knowledge of its number of neighbors. Let g be a randomized function
from {0, 1}b to some arbitrary output space O, which represents the final output of uk after it has
seen the message from vk. Then, for all k ̸= ℓ ∈ [m], P[g1(f1(k)) ̸= g2(f2(ℓ))] ≥ 3

4 , but for
all k ∈ [m], P[g1(f1(k)) = g2(f2(k))] ≥ 3

4 . Here, g1, g2 represent the function g with different
instantiations of the randomness, and f1, f2 represent the function f with different instantiations of
the randomness.

Fix some k ∈ [m] and for each output o ∈ O, let pk(o) represent the probability of outputting
g(f(k)) = o. Note that pk(o)2 is the probability that uk outputs o and u′

k outputs o, so the probability
that uk and u′

k have the same output equals
∑

o∈O pk(o)
2, which we are assuming is at least 3

4 . This
means that maxo∈O pk(o) =

∑
o∈O pk(o) ·maxo∈O pk(o) ≥

∑
o∈O pk(o)

2 ≥ 3
4 . Therefore, for all

k ∈ [m], there exists an output õk such that P[g(f(k)) = õk] ≥ 3
4 . Therefore, there must exist a value

sk ∈ {0, 1}b such that P[g(sk) = õk] ≥ 3
4 . Indeed, if not, then for any distribution over sk ∈ {0, 1}b,

we have that P[g(sk) = õk] <
3
4 , which means that P[g(f(k)) = õk] <

3
4 . In addition, õk is different

across all k, as if õk = õℓ for some k ̸= ℓ, then P[g(f(k)) = g(f(ℓ)) = õk] ≥
(
3
4

)2 ≥ 1
2 , which

means that P[g(f(k)) ̸= g(f(ℓ))] ≤ 1
2 .

But now, note that the sk’s must be distinct, because if sk = sℓ, then because P[g(sk) = õk] ≥ 3
4

and P[g(sℓ) = õℓ] ≥ 3
4 , this means that õk = õℓ. Therefore, s1, . . . , sm are all distinct. But since

each si lies in {0, 1}b, this means that b = Ω(logm) = Ω(logn), as desired.

To finish, we revisit the fact that we assumed there was no public randomness. Let us reintroduce the
random string r that every node of G is given. We assume that with probability at least 3/4, the top
nodes uk, u

′
k have the same output for all k ∈ [m] and that the nodes u1, . . . , um output pairwise

distinct values. But as this event happens with probability at least 3/4 over a random string r, there
must exist a choice of r for which it happens with probability at least 3/4 conditioned on r. But then
we are back to the case where there is no public randomness, as desired.

D.2 Lower Bound: ReLU Units

We next prove a lower bound on the number of ReLU units that we need to implement the WL test
as a graph neural network. To do so, we will use that any neural network ϕ : Rt → Rℓ which uses
ReLU’s as activation functions induces a partition of Rt into convex polytopes R1, . . . , RN such
that ϕ restricted to each Ri is just a linear function. Moreover, the number of such regions can be
bounded using the following theorem.

Theorem D.3 (Proposition 4 in [MPCB14]). The number of linear regions of any ReLU network
ϕ : Rt → Rd with a total of H ReLU units is at most 2H .

Let t, ℓ, F ∈ N be given and denote by [F] = {0, 1, . . . , F − 1}. Let ΦH denote the family of neural
networks ϕ : Rt → Rℓ with at most H ReLU units mapping. We will consider the following model
(see Figure 4): The algorithm designer picks a distribution D over ΦH . Let G be an arbitrary n-node
graph and recall that N (i) denotes the neighborhood of node i (including i itself). For arbitrary
inputs x1, . . . , xn ∈ [F]t to the n nodes (which we think of as the sums of the messages that the

19

ϕ

x1

ϕ

x2

ϕ

x3

ϕ

xn

y1 y2 y3 yn

z1 z2 zi

ϕ′ ϕ′ ϕ′

f

Figure 4: The structure of the GNN in our lower bound model. For every node i, node i receives the
message xi which is the sum of the labels of the neighbors of i. The algorithm then picks a random
ϕ ∈ ΦH with respect to D and for each i = 1, . . . , n, calculates yi = ϕ(xi) which is the new label
of node i. Next, each node i, sends yi to each of its neighbors and every node i then calculates
zi = f({yj | j ∈ N (i)}) =

∑
j∈N (i) yi. The zi’s then form the node inputs at the next iteration to

a new randomly chosen ϕ′ ∈ ΦH .

nodes receive), the GNN operates as follows: Using the publicly available random string, the nodes
collectively pick a random neural network ϕ ∈ ΦH with respect to D. For i = 1, . . . , n, node i then
calculates yi = ϕ(xi) (which we think of as the new label of node i). Then each node i sends yi to
each node in its neighborhood N (i) and calculates zi =

∑
j∈N (i) yj . We remark that this notation

is different from what we introduced in Section 1.1 and 1.2. Referring back to those sections, i
corresponds to node u, xi corresponds to S(k−1)

u , i.e., the sum of the received messaged of node u

in iteration k − 1, ϕ corresponds to ϕ(k), yi corresponds to h
(k)
u , i.e., the new label of node u, and zi

corresponds to S(k)
u , i.e., the sum of the received messaged of node u in iteration k. We have made

this switch in notation to make the argument that follows less unwieldy.

We would like our GNN to satisfy that for any n-node graph G, and arbitrary inputs x1, . . . , xn to
the nodes, it holds with probability at least 9/10 over the randomness of D that zi ̸= zj for all i, j
such that the multisets {xk | k ∈ N (i)} and {xk | k ∈ N (j)} are different. The following theorem
provides a lower bound on the number of ReLU units H needed for this property to hold.

Theorem D.4. Suppose that the neural networks in ΦH have at most H ≤ lgF − 4 ReLU units.
Then there exists a graph G on n nodes and inputs x1, . . . , xn ∈ [F]t such that if N (1), . . . ,N (n)

are the neighborhoods of the nodes of G, then with probability at least 1 −
(
3
4

)n/6
, there exists

i, j ∈ [n] such that zi = zj even though the multisets {xk | k ∈ N (i)} and {xk | k ∈ N (j)} are
different. Thus, to simulate the WL test with neural networks from ΦH , we need H > logF − 3
ReLU units.

Before proving the theorem, we first explain how to interpret it as a lower bound for the computational
complexity of implementing a WL iteration as in Definition 1.1 as a neural network. As an initial
observation, note that in any iteration k, if for two nodes u and v, the sums S

(k−1)
u and S

(k−1)
v

are distinct (recall that S(k−1)
u =

∑
u′∈N (u) h

(k−1)
u), then for the WL iteration to be successful,

we must also have that h(k)
u ̸= h

(k)
v . This is because, S(k−1)

u ̸= S
(k−1)
v implies that the multisets

{h(k−1)
u′ | u′ ∈ N (u)} and {h(k−1)

v′ | v′ ∈ N (v)} are also distinct. But then Definition 1.1 yields
that we need h

(k)
u ̸= h

(k)
v (at least with some probability 1 − p). Now, consider two nodes i = u

and j = v such that in some iteration of the WL test, the multisets of sums {S(k−1)
u′ | u′ ∈ N (u)}

and {S(k−1)
v′ | v′ ∈ N (v)} are different. This corresponds to the multisets {xk | k ∈ N (i)} and

{xk | k ∈ N (j)} being different. We would like to argue that for the WL iteration to be successful

20

3a1 + 1 3a1 + 13a1 3a1 + 2 3a2 + 1 3a2 + 13a2 3a2 + 2 3an′ + 1 3an′ + 13an′ 3an′ + 2
u1

v1

w1 u′
1

v′1

w′
1

u2

v2

w2 u′
2

v′2

w′
2 u′

n0

v′n0

w′
n0

un0

vn0

wn0

P1 P ′
1 P2 P ′

2 Pn0 P ′
n0

Figure 5: The graph of our lower bound construction of Theorem D.4. It consists of n/3 copies of a
path of length 3 grouped into pairs of two. For each such pair of paths (P, P ′), the two end nodes of
P are assigned (random) inputs (which we think of as the sum of their received messages) that are
guaranteed to have the same sum as the sum of the inputs to the end nodes of P ′. The idea of the
proof is that if the neural network ϕ has too few ReLU unit, then this linear dependence is preserved
with probability Ω(1) even after applying ϕ.

according to Definition 1.1, for each such pair of nodes u, v, we must have that also S(k)
u ̸= S(k)

v

with some good probability (the sums of labels in the next iteration differ). Theorem D.4 tells us that
the probability of this happening is very low if we use too few ReLU units. Now why do we require
that S(k)

u ̸= S(k)
v for such a pair of nodes u, v?

Since the multisets {S(k−1)
u′ | u′ ∈ N (u)} and {S(k−1)

v′ | v′ ∈ N (v)} are different, by the initial
observation, the multisets {h(k)

u′ | u′ ∈ N (u)} and {h(k)
v′ | v′ ∈ N (v)} must also be distinct for the

WL test to be successful. But since the multisets of labels {h(k)
u′ | u′ ∈ N (u)} and {h(k)

u′ | v′ ∈
N (v)} are distinct it follows by another application of Definition 1.1, that we must also have that
h
(k+1)
u ̸= h

(k+1)
v . However, the only way this can happen is if S(k)

u ̸= S(k)
v as otherwise these two

sums will be mapped to the same label by ϕ(k+1).

We remark that this lower bound applies to an isolated WL iteration rather than a full sequence of
iterations. In particular, the inputs x1, . . . , xn ∈ [F]t (corresponding to the sums {S(k−1)

u | u ∈ G})
are adversarially chosen while in reality these inputs are not arbitrary but are the result of a prior
WL iteration. Our construction in Section 3 indeed works against such adversarially chosen sums in
the sense that different multisets of sums are mapped (via applying ϕ(k) and summing the outputs
for each multisets) to different sums with high probability, and as such our lower bound is exactly
a lower bound for this harder problem. However, in general the sums S(k−1)

v are not adversarially
chosen, and it would very be interesting to find a lower bound that does not require this assumption
but works all the way from a graph and its initial labels.

Proof of Theorem D.4. We exhibit a graph G and a distribution D0 over the possible inputs, such
that for any neural network ϕ : [F]t → Rℓ with at most H ReLU units, if (x1, . . . , xn) ∈ ([F]t)n

is chosen with respect to D0, then with probability at least 1 −
(
3
4

)n/6
, there exists i, j such that

zi = zj even though the multisets {xk | k ∈ N (i)} and {xk | k ∈ N (j)} are different. It then
follows from Yao’s minimax principle that for any distribution D over ΦH , there exists an input
x = (x1, . . . , xn) such that the same bad event occurs with the same high probability. As desired.

Let us start out by describing the graph G. Assume with no loss of generality that 6 divides n,
i.e. n = 6n0 for some natural number n0. The graph G simply consists of 2n0 copies of a path of
length 2 grouped into pairs (P1, P

′
1), . . . , (Pn0

, P ′
n0
) (see Figure 5). Denote the vertices of path Pi

by (ui, vi, wi) and similarly the vertices of path P ′
i by (u′

i, v
′
i, w

′
i). We next proceed to describe the

distribution D0 over inputs (x1, . . . , xn) ∈ ([F]t)n. Here, for each i < n0, we let x3i, x3i+1, x3i+2

be the inputs to nodes ui, vi and wi respectively and x3i+3, x3i+4, x3i+5 be the inputs to nodes
u′
i, v

′
i and w′

i. To do so, let ℓ = ⌊F/3⌋ and define for each 0 ≤ a < ℓ and b ∈ [F]t−1 the set
Fa,b = {(3a, b), (3a+1, b), (3a+2, b)}. Thus, Fa,b ⊆ [F]t consists of the three vectors which have
their first coordinate equal to respectively 3a,3a+ 1 and 3a+ 2, and b as their last t− 1 coordinates.
For each i < n0, we independently pick uniformly random 0 < a ≤ ℓ and b ∈ [F]t−1. We then
define x6j = (3a, b), x6j+2 = (3a + 2, b), and x6j+3 = x6j+5 = (3a + 1, b) (see Figure 5). We
further define x6j+1 = x6j+4 = 0 (the exact value is unimportant, as long as they are equal). Note
that x6j +x6j+1+x6j+2 = x6j+3+x6j+4+x6j+5. In particular, if the random ϕ ∈ F was a linear

21

map, we would have that

z6j+1 = ϕ(x6j) + ϕ(x6j+1) + ϕ(x6j+2) = ϕ(x6j+3) + ϕ(x6j+4) + ϕ(x6j+5) = z6j+4, (D.1)

in spite of the multisets, {x6j , x6j+1, x6j+2} and {x6j+3, x6j+4, x6j+5} being different. Now, ϕ is
a neural network, so this identity does not need to hold. The idea is however, that if ϕ has only few
ReLU units, then we obtain a good upper bound on the number of linear regions by Theorem D.3
and since a and b are random, the set Fa,b is likely to be fully contained in one of these regions. And
since ϕ restricted to this region in linear, (D.1) holds in this case.

To formalize this, assume that ϕ : [F]t → Rℓ is a neural network in ΦH with at most H ReLU
units. Using Theorem D.3, it follows that [0, F − 1]t can then be partitioned into at most 2H convex
regions R1, . . . , RN , such that for each region Ri, it holds that ϕ restricted to Ri is simply a linear
function. For 0 ≤ a < ℓ and b ∈ [F]t−1, we let La,b be the straight line segment connecting the two
points (3a, b) and (3a+ 2, b). By convexity, for a fixed Ri and a fixed b ∈ [F]t−1, at most 2 of the
line segments in {La,b | 0 ≤ a < ℓ} can intersect the boundary of Ri. Since there are F t−1 distinct
choices for b and N ≤ 2H choices for i, this implies that the number of line segments La,b that
can cross any of the boundaries of the convex regions is at most 2H+1F t−1. Each of the remaining
segments La,b must be fully contained in some region Ri. There are ⌊F/3⌋F t−1 choices of a and b
in total, and thus, at least ⌊F/3⌋F t−1 − 2H+1F t−1 of the segments La,b are fully contained in one
of the regions Ri, which means that ϕ restricted to La,b acts as a linear map. For such a segment
La,b, we get by linearity that

ϕ(3a, b) + ϕ(3a+ 2, b) = 2ϕ(3a+ 1, b).

In other words, if for a fixed i ≤ n0, (a, b) is chosen such that La,b is fully contained in one of the
convex regions, then (D.1) is satisfied. It follows that for any given i < n0,

Pr[z6i+1 = z6i+4] ≥ 1− 2H+1F t−1

⌊F/3⌋F t−1
≥ 1− 12 · 2H

F
. (D.2)

Since the event (z6i+1 = z6i+4)i≤n0 are independent (as we choose independent (a, b) for each pair
of paths (Pi, P

′
i)), it follows that

Pr[∃0 ≤ i ≤ n0 : z6i+1 = z6i+4] ≥ 1−
(
12 · 2H

F

)n0

.

If in particular, H ≤ lgF − 4, we obtain that

Pr[∃0 ≤ i ≤ n0 : z6i+1 = z6i+4] ≥ 1−
(
3

4

)n/6

,

As the multisets {xk | k ∈ N (6i+ 1)} and {xk | k ∈ N (6i+ 4)} are different, this completes the
proof.

Remark D.5. In analogue with our construction in Section 2 and Section 3, we assumed in the
above proof that the aggregate function f is the summation function. As such, f is just another
neural network but without a single ReLU unit. We can therefore think of the combined computation
performed by f and ϕ (illustrated in Figure 5) as the result of applying a single neural network.
It follows from this observation (and the proof of Theorem D.4) that in the more general setting
where f is a function in ΦH1

and where the neural network ϕ ∈ ΦH2
, then we must have that

H1 +H2 > logF − 4 in order to successfully simulate the WL test.

D.2.1 Better bounds on the number of linear regions.

The proof of Theorem D.4 used that the number of convex linear regions of any neural network with
at most H ReLU’s is at most 2H . However, in many cases one can obtain better upper bounds on
the number of such regions, and this directly translates to a better lower bound than the one given in
Theorem D.4. Indeed, if the family of neural networks Φ satisfies that the domain of any ϕ ∈ Φ can
be partitioned into at most K convex regions such that ϕ restricted to each of these regions is linear,
then the lower bound in (D.2) instead becomes

Pr[z6i+1 = z6i+4] ≥ 1− 12 ·K
F

.

22

In particular, when using independence of the events (z6i+1 = z6i+4)i<n0 , we just need K ≤ F
24 ,

say, to get that an error occur with probability at least 1− 2−Ω(n). Plugging in the bound K ≤ 2H

of Theorem D.3 gave the desired bound of Theorem D.4 which led to the Ω(logF) lower bound.
If we instead use the more fine grained theorem below, we obtain better bounds for shallow neural
networks with low input dimension as stated in Corollary D.7.

Theorem D.6 (Theorem 1 in [RPK+17]). Any ReLU neural network with input dimension t, width
w, and depth d has at most O(wd·t) linear regions.

Corollary D.7. Let Φt,d,w consist of all ReLU neural networks with input dimension t, depth d,
and width w. Suppose that we are in the setting of Theorem D.4, except that the neural network
is picked from Φt,d,w. Then the conclusion of the theorem holds as long as wd·t ≤ cF for a small
enough constant c. In particular, to simulate the WL test with neural networks from Φt,d,w, we need
dw = Ω(dF

1
dt) ReLU units.

As an example, for shallow neural networks with low input dimension, say with d, t = O(1), this
lower bound becomes dw = FΩ(1), i.e. polynomial rather than logarithmic in the size of the
underlying field.

For certain architectures of the neural networks one can obtain even stronger bounds on the number
of linear regions (see e.g., Proposition 3 in [Mon17] and Theorem 1 in [STR18]). These bounds are
parametrized in the number of ReLU units in each of the d layers of the neural networks. One can
therefore obtain even more fine grained lower bounds on the number of ReLU units if one makes
more assumptions on the family of neural networks but the bounds are more opaque and we refrain
from stating them here.

D.2.2 Description complexity

In this subsection, we consider more general function classes Φ that do not necessarily have to consist
of neural networks. We prove that for any aggregation function f , if for any two distinct multisets
of labels each of size at most n, there exists a function ϕ ∈ Φ such that the multisets are mapped to
different labels by ϕ ◦ f , then |Φ| = Ω

(
n

logn

)
. It follows that the description complexity of Φ must

be Ω(log n). Our bound is combinatorial, and does not employ the linear structure of F t. Hence we
may just put t = 1 and think of F as a set rather than a vector space.

Theorem D.8. Let F and n be natural numbers and let N =
∑n

i=0

(
i+F−1

i

)
be the number of

multisets of [F] of size at most n. Suppose that f is any aggregation function mapping multisets of [F]

to some range R. Let Φ be any set of functions from R to F and assume that |Φ| < logN
logF . Then there

exists distinct multisets A and B each with at most n elements from [F] such that ϕ(f(A)) = ϕ(f(B))
for all ϕ ∈ Φ.

Proof. Note that each function ϕ ∈ Φ induces a partition Pϕ on the set of these multisets induced
by the equivalence relation defined by X ∼ϕ Y ⇐⇒ ϕ(f(X)) = ϕ(f(Y)). By repeated application
of the pidgeonhole principle, there must exists a collection C of multisets each containing at most n
elements from [F] such that (1) for all ϕ ∈ Φ and all X,Y ∈ C, X ∼ϕ Y and (2) |C| ≥ N/F |Φ|. If
in particular |Φ| < logN

logF , we must have that |C| ≥ 2. Letting A and B be distinct elements of C, we
have that ϕ(f(A)) = ϕ(f(B)) for all ϕ ∈ Φ.

Note that number of distinct degrees of the vertices of a simple n-node graph could be as large as
Ω(n), so it is a natural assumption that also F = Ω(n). Indeed, if F is smaller, then for such a graph,
the simulation of the WL test will fail with probability 1 since it must inevitably assign two nodes of
distinct degrees the same label in F . With this assumption, it follows that

logN = log

n∑
i=0

(
i+ F − 1

i

)
≥ log

(
n+ F − 1

n

)
≥ log

(
1 +

F − 1

n

)n

= Ω

(
n ·max

{
1, log

F

n

})
,

23

using the inequality
(
n
k

)
≥
(
n
k

)k
. Thus,

logN

logF
= Ω

(
n ·

max
{
1, log F

n

}
logF

)
= Ω

(
n

log n

)
.

In particular, the description complexity of Φ has to be Ω(log n) in order to separate any two distinct
multisets X,Y ⊂ F each consisting of at most n elements. We note that the description complexity
of the construction in Section 3 is poly log n.

24

	Introduction
	Preliminaries
	Overview of Our Techniques

	First Construction: Polynomial-size GNN
	Second Construction: Polylogarithmic-size GNN via Pseudo-randomness
	Lower Bounds
	Experiments
	Omitted Proofs of Section 1
	Omitted Proofs of Section 2
	Implementation of Modulo F via ReLU Network

	Omitted Proofs for Section 3
	Proof of Corollary 3.3

	Lower bounds
	Lower Bound: Communication Complexity
	Lower Bound: ReLU Units
	Better bounds on the number of linear regions.
	Description complexity

