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Abstract

There is mounting empirical evidence of emergent phenomena in the capabilities1

of deep learning methods as we scale up datasets, model sizes, and training times.2

While there are some accounts of how these resources modulate statistical capacity,3

far less is known about their effect on the computational problem of model training.4

This work conducts such an exploration through the lens of learning k-sparse5

parities of n bits, a canonical family of problems which pose theoretical compu-6

tational barriers. In this setting, we find that neural networks exhibit surprising7

phase transitions when scaling up dataset size and running time. In particular, we8

demonstrate empirically that with standard training, a variety of architectures learn9

sparse parities with nO(k) examples, with loss (and error) curves abruptly dropping10

after nO(k) iterations. These positive results nearly match known SQ lower bounds,11

even without an explicit sparsity-promoting prior. We elucidate the mechanisms of12

these phenomena with a theoretical analysis: we find that the phase transition in13

performance is not due to SGD “stumbling in the dark” until it finds the hidden set14

of features (a natural algorithm which also runs in nO(k) time); instead, we show15

that SGD gradually amplifies a Fourier gap in the population gradient.16

1 Introduction17

Neural networks perform better with more resources (data, model size, training time), but different18

tasks exhibit qualitatively different dependencies of performance on resources. In particular, while19

many learning tasks exhibit continuous improvement in performance with increasing resources, other20

cases show discontinuous improvement, where a capability emerges at a certain threshold. Through a21

statistical lens, it is well-understood that larger models, trained with more data, can fit more complex22

and expressive functions. However, far less is known about the analogous computational question:23

how does the scaling of these resources influence the success of gradient-based optimization for24

training these models?25

These emergent phase transitions cannot be explained via statistical capacity alone. In many cases26

we see a phase transition even when the amount of data remains fixed, with only model size or27

training time increasing. A timely example is the emergence of reasoning and few-shot learning28

capabilities when scaling up language models (56, 16, 18, 36). Power et al. (55) give examples29

exhibiting discontinuous improvements in population accuracy (“grokking”) when running time30

increases, while data and model size remain fixed.31

In this work, we analyze the computational aspect of scaling in deep learning in a simple synthetic32

setting which already exhibits discontinuous improvements. Specifically, we consider the sparse33

parity problem— where the label is the parity (XOR) of k ≪ n bits in a random length-n binary string.34

This is a canonical problem which is computationally difficult for a range of algorithms, including35

gradient-based (41) and streaming (44) algorithms. We focus on analyzing the resource measure of36
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Figure 1: Main empirical findings at a glance. A variety of neural networks, with standard training
and initialization, can solve the (n, k)-parity learning problem, with a number of iterations scaling as
nO(k). Left: Training curves under various algorithmic choices (architecture, batch size, learning
rate) on the (n = 50, k = 3)-parity problem. Right: Median convergence times for small (n, k).

training time, and demonstrate that the loss curves for sparse parities display a phase transition across37

a variety of architectures and hyperparameters (see Figure 1, left). A striking observation is that SGD38

robustly finds the sparse subset (and hence, effectively, reaches 0 error) with a variety of activation39

functions and initialization schemes, even with no over-parameterization. This robust convergence is40

the starting point for our investigation.41

Perhaps the most natural hypothesis to explain SGD’s success in learning parities would be that it42

simply “stumbles in the dark”, essentially performing random search for the unknown target (e.g.43

via stochastic gradient Langevin dynamics). If that were the case, we might expect to observe a44

convergence time of 2Ω(n), like a naive search over parameters or subsets of indices. However,45

Figure 1 (right), already provides some evidence against this “random search” hypothesis: the46

convergence time is closer to an nO(k) scaling. Notably, such a convergence rate implies that SGD is47

closer to achieving the optimal computation time among a natural class of algorithms, namely SQ48

(statistical query) algorithms.49

Through an extensive empirical analysis of the scaling behavior of a variety of models, as well as50

theoretical analysis, we give strong evidence against the “stumbling in the dark” viewpoint. Instead,51

there is a hidden progress measure under which SGD is steadily improving. Furthermore, and52

perhaps surprisingly, we show that SGD achieves a computational runtime much closer to the optimal53

SQ lower bound than simply doing (non-sparse) parameter search. More generally, our theoretical54

and empirical investigations reveal a number of notable phenomena regarding the dependence of55

SGD’s performance on resources, and we provide further theoretical and empirical evidence of phase56

transitions with data, model size, and training time.57

1.1 Our contributions58

SGD efficiently learns sparse parities, in theory and practice. It is known from SQ lower bounds59

that (noisy) gradient descent on any architecture requires at least nΩ(k) computational steps to60

learn k-sparse n-dimensional parities (for background, see Appendix A). However, with standard61

architectures and initialization, which do not explicitly encode a sparsity prior, one may expect SGD’s62

performance to be much worse, on the order of 2Ω(n). We give extensive empirical evidence that this63

is not the case.64

Empirical Finding 1. For all small instances (n ≤ 30, k ≤ 4) of the sparse parity problem,65

architectures A ∈ {2-layer MLPs, Transformers1, sinusoidal (and other non-standard) neurons,66

PolyNets2}, initializations in {uniform, Gaussian, Bernoulli}, and batch sizes 1 ≤ B ≤ 1024, SGD67

on A solves the (n, k)-sparse parity problem (w.p. ≥ 0.2) within at most c · nαk steps, for small68

architecture-dependent constants c, α.69

1With a smaller range of hyperparameters.
2A non-standard architecture introduced in this work; see Section 3 for the definition.
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For a subset of these architectures, we performed more extensive training, to show scaling behaviors70

of the computation time;3 see Figure 1 (right) and Figure 10 in the appendix.71

The above results indicate that SGD succeeds at solving parities much faster than the 2Ω(n) steps that72

would be required by random search without a sparse prior. This suggests that despite flat loss and73

accuracy curves before the phase transition, SGD makes progress “under the hood”. We show that74

this is indeed the case by coming up with a progress measure that continuously improves throughout75

training. We can explain the loss and accuracy curves using this progress measure, by showing that76

they typically rise sharply once the measure passes a certain threshold.77

Theoretical Analysis. Our empirical results suggest that, in a number of computational steps78

matching the SQ limit, SGD is able to solve the parity problem and identify the influential coordinates,79

without an explicit sparse prior. We give a theoretical analysis which validates this claim.80

Informal Theorem 2. On 2-layer MLPs of width 2Θ(k), and with batch size nO(k), SGD converges81

with high probability to a solution with at most ϵ error on the (n, k)-parity problem in at most82

2O(k) · poly(1/ϵ) iterations.83

We also present a stronger analysis for an idealized architecture (which we call the disjoint-PolyNet),84

which allows for any batch size, and captures the phase transitions observed in the error curves.85

Informal Theorem 3. On disjoint-PolyNets, SGD (with any batch size B ≥ 1) converges with high86

probability to a solution with at most ϵ error on the (n, k)-parity problem in at most nO(k) · log(1/ϵ)87

iterations. Continuous-time gradient flow exhibits a phase transition: it spends a 1− o(1) fraction of88

its time before convergence with error ≥ 49%.89

In addition to refuting the alternative “random search” hypothesis, our work also poses a counterex-90

ample to other models for the computational mechanisms of deep learning; for instance, it provides a91

setting where deep neural nets successfully learn a concept to 100% accuracy while the corresponding92

Neural Tangent Kernel (NTK) only achieves trivial performance, hence showing the importance of93

feature learning. We also construct a counterexample to the “deep only works if shallow is good”94

principle of (48), demonstrating a case where a deep network can get near-perfect accuracy even95

when greedy layerwise training (e.g. Belilovsky et al. (13)) cannot beat trivial performance. By96

providing positive theory and empirics which elude these simplified explanations of SGD, we hope to97

point the way to a more complete understanding of learning dynamics in the challenging cases where98

no apparent progress is made for extended periods of time.99

1.2 Related work100

We present the most directly related work on feature learning, and learning parities with neural nets.101

A broader discussion can be found in Appendix A.3.102

SGD and feature learning. Theoretical analysis of gradient descent over neural networks is103

notoriously hard, due to the non-convex nature of the optimization problem. That said, it has been104

established that in some settings, the dynamics of GD keep the weights close to their initialization,105

thus behaving like convex optimization over the Neural Tangent Kernel (see, for example, (38, 7, 22)).106

In contrast, it has been shown that in various tasks, moving away from the fixed features of the NTK107

is essential for the success of neural networks trained with GD (for example (71, 6, 69) and the review108

in (50)). These results demonstrate that feature learning is an important part of the GD optimization109

process. Our work also focuses on a setting where feature learning is essential for the target task. In110

our theoretical analysis, we show that the initial population gradient encodes the relevant features for111

the problem. The importance of the first gradient step for feature learning has been recently studied112

in (12).113

Learning parities with neural networks. The problem of learning parities using neural networks114

has been investigated in prior works from various perspectives. It has been demonstrated that parities115

are hard for gradient-based algorithms, using similar arguments as in the SQ analysis (63, 1). One116

possible approach for overcoming the computational hardness is to make favorable assumptions117

on the input distribution. Indeed, recent works show that under various assumptions on the input118

distribution, neural networks can be efficiently trained to learn parities (XORs) (20, 64, 27, 50). In119

3While our focus is on the performance as a function of training time, we also performed some experiments
on performance as a function of model size, see Section 5.
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contrast to these results, this work takes the approach of intentionally focusing on a hard benchmark120

task, without assuming that the distribution has some favorable (namely, non-uniform) structure.121

This setting allows us to probe the performance of deep learning at a known computational limit.122

Notably, the work of (8) provides analysis for learning polynomials (and in particular, parities) under123

the uniform distribution. However, their main results require a network of size nO(k) (i.e., extremely124

overparameterized network), and provides only partial theoretical and empirical evidence for the125

success of smaller networks. Studying a related subject, some works have shown that neural networks126

display a spectral bias, learning to fit low-frequency coefficients before high-frequency ones (57, 17).127

2 Preliminaries128

We define necessary notation here; see Appendix A for more background and technical ingredients.129

Sparse parities. For integer n ≥ 1 and non-empty S ⊆ [n], the (n, S)-parity function χS :130

{±1}n → {±1} is defined as χS(x) =
∏

i∈S xi. We define the (n, S)-parity distribution DS as the131

distribution over (x, y = χS(x))
4 where x is drawn from the uniform distribution over {±1}n, which132

we denote by Unif({±1}n). We define the (n, k)-parity learning problem as the task of recovering133

S using samples from DS , where S is chosen at random in
(
[n]
k

)
. Statistically, it is possible to do134

so using Θ(log
(
n
k

)
) ≈ k log n samples. However, in the statistical query (SQ) model (41), (which135

has been shown to encapsulate gradient-based methods such as GD or SGD (2)), this task requires136

Ω(nk) queries (assuming constant level of noise). While learning noiseless parities can be solved by137

Gaussian elimination using O(n) samples, learning sparse noisy parities, even at a very small noise138

level (i.e., o(1) or n−δ) is believed to inherently require nΩ(k) computational steps and samples, or139

exponential computation with no(k) samples. This was first explicitly conjectured by Alekhnovich140

(5), and has been the basis for several cryptographic schemes (e.g., (37, 9, 10, 15)).141

Notation for neural networks and training. Our main results are presented in the online learning142

setting, with a stream of i.i.d. batches of examples. At each iteration t = 1, . . . , T , a learning143

algorithm receives a batch of B examples {(xt,i, yt,i)}Bi=1 drawn i.i.d. from DS , then outputs a144

classifier ŷt : {±1}n → {±1}. We say that the algorithm solves the parity task in t steps with ϵ error,145

if with probability at least 1− ϵ over both training and internal randomness, as well as (x, y) ∼ DS ,146

ŷt(x) = y. We will focus on the case that ŷt = sign(f(x; θt)) for some parameters θt in a continuous147

domain Θ and for a continuous function f : {±1}n × Θ → R.5 A ubiquitous online learning148

algorithm is gradient descent (GD). For a choice of loss function ℓ : {±1} × R → R, initialization149

θ0 (that are chosen from some distribution), learning rate schedule {ηt}Tt=1 ⊆ R and weight-decay150

schedule {λt}Tt=1 ⊆ R, GD refers the standard iterative update rule using the regularized, empirical151

loss function, which is a function of architecture f . The learning rate ηt can also be a vector (e.g.,152

allowing different rate schedules for different layers).153

3 Empirical findings154

3.1 SGD on neural networks learns sparse parities155

The central phenomenon of study in this work is the empirical observation that neural networks, with156

standard initialization and training, can solve the (n, k)-parity problem in a number of iterations157

scaling as nO(k) on small instances. We observed robust positive results for randomly-initialized158

SGD on the following architectures, indexed by Roman numerals:159

• 2-layer MLPs: ReLU (σ(z) = (z)+) or polynomial (σ(z) = zk) activation, in a wide variety of160

width regimes r ≥ k. Settings (i), (ii), (iii) (resp. (iv), (v), (vi)) use r = {10, 100, 1000} ReLU161

(resp. polynomial) activations. We also consider r = k (exceptional settings (*i), (*ii) ), the162

minimum width for representing a k-wise parity for both activations.163

• Single neurons: Next, we consider non-standard activation functions σ which allow a one-neuron164

architecture f(x;w) = σ(w⊤x) to realize k-wise parities. The constructions stem from letting165

4Our theoretical analyses and experiments can tolerate noisy parities, that is, random flipping of the label.
For ease of presentation, we state the non-noisy setting.

5When f(x; θ) = 0 in practice (e.g. with sign initialization), we break the tie arbitrarily. We ensure in the
theoretical analysis that this does not happen.
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Figure 2: Black-box observations about the training dynamics. Left: Histograms of convergence
times over 106 random trials, with heavy upper tails but no observed successes near t = 0 (unlike
random search). Center: Optimization path (and convergence time) depend heavily on initialization,
not the randomness of SGD; B = 128, η = 0.01 shown here. Right: The power-law exponent (α
such that tc ∝ nα) eventually degrades on larger problem instances.

w∗ =
∑

i∈S ei, and constructing σ(·) to interpolate (the appropriate scaling of) k−w∗⊤x
2 mod 2166

with a piecewise linear k-zigzag activation (vii), or a degree-k polynomial (viii). Going a step167

further, a single ∞-zigzag (ix) or sinusoidal (x) neuron can represent all k-wise parities. We also168

removed the second trainable layer (setting u = 1), obtaining settings (xi), (xii), (xiii), (xiv). We169

found that wider architectures with these activations also trained successfully.170

• Transformers: Motivated by recent theoretical and empirical work on the ability of self-attention171

to learn sparse functions and parities (47, 23, 32), we consider a simplified specialization of the172

Transformer architecture to this sequence classification problem. This is the less-robust setting173

(*iii); the architecture and optimizer are described in Appendix D.1.3.174

• PolyNets: Our final setting (xv) is the PolyNet, a slightly modified version of the parity machine175

architecture. Parity machines have been studied extensively in the statistical mechanics of ML176

literature (see the related work section) as well as in a line of work on ‘neural cryptography’ (59). A177

parity machine outputs the sign of the product of k linear functions of the input. A PolyNet simply178

outputs the product itself. Both architectures can clearly realize k-sparse parities. The PolyNet179

architecture was originally motivated by the search for an idealized setting where an end-to-end180

optimization trajectory analysis is tractable (see Section 4.1); we found in these experiments that181

this architecture trains very stably and sample-efficiently.182

Robust space of positive results. All of the networks listed above were observed to successfully learn183

sparse parities in a variety of settings. We summarize our findings as follows: for all combinations184

of n ∈ {10, 20, 30}, k ∈ {2, 3, 4}, batch sizes B ∈ {1, 2, 4, . . . , 1024}, initializations {uniform,185

Gaussian, Bernoulli}, loss functions {hinge, square, cross entropy}, and architecture configurations186

{(i), (ii), . . . , (xv)}, SGD solved the parity problem (with 100% accuracy, validated on a batch187

of 213 samples) in at least 20% of 25 random trials, for at least one choice of learning rate η ∈188

{0.001, 0.01, 0.1, 1}. The models converged in tc ≤ c · nαk ≤ 105 steps, for small architecture-189

dependent constants c, α (see Appendix C). Figure 1 (left) shows some representative training curves.190

Less robust configurations. Settings (*i) and (*ii), where the MLP just barely represents a k-sparse191

parity, and the Transformer setting (*iii), are less robust to small batch sizes. In these settings, the192

same positive results as above only held for sufficiently large batch sizes: B ≥ 16. Also, setting (*iii)193

used the Adam optimizer; see Appendix D.1.3 for details.194

Phase transitions in training curves. For almost all of the architectures, we find that that the training195

curves exhibit phase transitions in terms of running time (and thus, in the online learning setting,196

dataset size as well): long durations of seemingly no progress, followed by periods of rapid decrease197

in the validation error. Strikingly, for architectures (v) and (vi), this plateau is absent: the error in the198

initial phase appears to decrease with a linear slope. See Appendix C.8 for more plots.199

3.2 Random search or hidden progress?200

The remainder of this paper seeks to answer the question: “By what mechanism does deep learning201

solve these emblematic computationally-hard optimization problems?”202

A natural hypothesis would be that SGD somehow implicitly performs Monte Carlo random search,203

“bouncing around” the loss landscape in the absence of a useful gradient signal. Upon closer inspection,204

several empirical observations clash with this hypothesis:205
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Figure 3: Hidden progress when learning parities with neural networks. Left, center: Black-box
losses and accuracies exhibit a long plateau and sharp phase transition (top), hiding gradual progress
in the SGD iterates (bottom). Right: A hidden progress measure which distinguishes gradual feature
amplification (top) from training on noise (bottom).

• Scaling of convergence times: Without an explicit sparsity prior in the architecture or initialization,206

it is unclear how to account for the nΘ(k) runtimes observed in experiments. The initializations,207

which certainly do not prefer sparse functions6, are close to the correct solutions with probability208

2−Ω(n) ≪ n−k. On larger instances (n, k), the power-law exponents worsen; see Figure 2 (right),209

and the discussion in Appendix C.2.210

• No early convergence: Over a large number of random trials, no copies of this randomized211

algorithm get “lucky” (i.e. solve the problem in significantly fewer than the median number of212

iterations); see Figure 2 (left). The success times of random exhaustive search would be distributed213

as Geom(1/
(
n
k

)
), whose probability mass is highest at t = 0 and decreases monotonically with t.214

• Sensitivity to initialization, not stochastic batches: Running these training setups over multiple215

stochastic batches from a common initialization, we find that loss curves and convergence times216

are highly correlated with the architecture’s random initialization; see Figure 2 (center).217

Even these observations, which do not probe the internal state of the algorithm, suggest that exhaustive218

search is an insufficient picture of the training dynamics, and a different mechanism is at play.219

4 Theoretical analyses220

4.1 Provable emergence of the parity indices in high-precision gradients221

We now provide a theoretical account for the success of SGD in solving the (n, k)-parity problem.222

Our main theoretical observation is that, in many cases, the population gradient of the weights at223

initialization contains enough “information” for solving the parity problem. That is, given an accurate224

enough estimate of the initial gradient (by e.g. computing the gradient over a large enough batch225

size), the relevant subset S can be found.226

As a warm-up example, consider training a single ReLU neuron f(x;w) = σ(w⊤x) w.r.t. the227

correlation loss ℓ(y, ŷ) = −yŷ, from the initialization w = [1, . . . , 1]. While a single neuron cannot228

express the parity, we observe that the population gradient can indicate what the correct subset229

is: E(x,y)∼DS
[∇wiℓ(y, f(x;w))] = E(x,y)∼DS

[
−yxi σ

′(w⊤x)
]

which corresponds to either the230

order-(k − 1) Fourier coefficient S \ {i} of the function x 7→ σ′(w⊤x) (if i ∈ S is a relevant231

coordinate) or the order-(k + 1) coefficient S ∪ {i} (if i ̸∈ S is irrelevant). When σ is the ReLU232

function and w = [1, . . . , 1], σ′(w⊤x) =
sign(

∑
i xi)+1

2 is just a shifted majority function of x. The233

Fourier spectrum of majority is well-understood: for even k, there is a gap between these Fourier234

coefficients that is detectable using nO(k) samples.235

This analysis can be further extended to a ReLU neuron initialized with weights w ∈ {±1}n and a236

small bias. In fact, we can show that taking a single gradient step with large enough batch size on a237

6Indeed, under all standard architectures and initialization, the probability that a random network is Ω(1)-
correlated with a sparse parity would be 2−Ω(n), since with that probability 1− o(1) of the total influence would
be accounted by the n− k irrelevant features.
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ReLU network trained with the hinge-loss ℓ(y, ŷ) = max{1− yŷ, 0}, already finds features that can238

solve the parity problem. Using this, we show that training a ReLU MLP with SGD solves the parity239

problem:240

Theorem 4. Fix some ϵ ∈ (0, 1), let k be some even number, and assume that n is some odd number241

satisfying n ≥ Ω(k4 log(nk/ϵ)). There exist a symmetric random initialization scheme and learning242

rate and weight decay schedules s.t. for every S ⊆ [n] of size k, training a ReLU MLP of size243

r = O(2kk log(k/ϵ)) with batch size B = nO(k) log2(r/ϵ) for T = poly(k, r, 1/ϵ) iterations on244

DS w.r.t. the hinge loss, finds a network f(x; θt) with expected loss: E [ℓ(f(x; θt), y)] ≤ ϵ, where245

the expectation is over the randomness of initialization, training and sampling (x, y) ∼ DS .246

The analysis presented above shows that when the batch size scales with nO(k), SGD over MLP solves247

the parity problem. However, in our experimental setting, the number of steps, and not the batch size,248

scales with nO(k). While we believe that running SGD with small batch size and small learning rate249

essentially amplifies the signal in the population gradient, behaving similarly to performing a large250

step over a large batch size, we do not have a complete analysis for training MLPs with SGD in the251

small batch size regime. To complement the above result, in Section 4.2 we analyze the trajectory for252

a variant of the PolyNet architecture trained with gradient flow.253

We note that, while the above analysis applies for ReLU MLPs with a specific initialization scheme, a254

similar feature emergence phenomenon can be observed in a broader set of architectures and setting.255

Indeed, for feature emergence to occur, we only require that there is a “gap” between the relevant and256

irrelevant Fourier coefficients. Formally, denote f̂(S) := E [f(x)χS(x)] the Fourier coefficient of f257

at S, and observe the following definition:258

Definition 1 (Fourier gap). For some function f : {±1}n → R and some subset S of size k, we259

say that f has a γ-Fourier gap at S if (1) for every (k − 1)-element subset S′ ⊆ S, it holds that260

|f̂(S′)| ≥ γ, and (2) for every subset S′ ⊆ [n] of size k + 1 it holds that |f̂(S′)| ≤ γ/2.261

Now, given a network architecture where some neuron has a γ-Fourier gap with respect to the target262

subset S, we can generalize the result of the ReLU neuron. That is, we show that the subset S can be263

determined by observing an estimate of the population gradient at initialization:264

Proposition 5. Let σ be some activation function and let ℓ be some loss function. Denote f(x;w) =265

σ(w⊤x). Fix some subset S ⊆ [n]. Let g ∈ Rn be an estimate of the population gradient such266

that
∥∥g − E(x,y)∼DS

[∇wℓ(y, f(x;w))]
∥∥
∞ ≤ γ/4. Then, for every w s.t. σ′(w⊤x) has a γ-Fourier267

gap w.r.t. to S and ℓ′(f(x;w), y) = −y for all x, the target subset S is detected by g, namely268

S = {i ∈ [n] : |gi| ≥ 3γ/4}.269

Comparison with NTK analysis. In recent years, many theoretical works have studied the behavior270

of SGD on neural networks through the lens of the neural tangent kernel (NTK) (38). It is therefore271

important to highlight the fact that the NTK (or, in fact, any kernel) cannot solve the sparse parity272

problem. The following result (see (40, 49)) shows that no kernel can achieve small error on the273

sparse parity problem, unless the size of the kernel is nΩ(k):274

Theorem 6. Let Ψ : {±1}n → RD be some D-dimensional embedding with supx ∥Ψ(x)∥2 ≤ 1,275

and let R > 0 be some number. If DR2 < ϵ2 ·
(
n
k

)
, then there exists some (n, k)-parity distribution276

DS s.t. inf∥w∥≤R E(x,y)∼DS

[
ℓ(Ψ(x)⊤w, y)

]
> 1− ϵ.277

4.2 Disjoint-PolyNet: an idealized architecture for trajectory analyses278

In this section, we present an idealized architecture (a version of PolyNets (xv)) that exhibits similar279

behavior to MLPs (experimentally) and is technically easier to analyze. More specifically, we consider280

the disjoint-PolyNet which takes a product over k linear functions where the linear functions are281

computed on k disjoint partitions of the input P1, . . . , Pk with each Pi = {(i− 1)n′ + 1, . . . , in′}282

with n′ = n/k7, that is, f(x;w1:k) :=
∏k

i=1 w
⊤
i xPi

. As noted in the related work section, this is283

equivalent to a tree parity machine but with real-valued rather than ±1 output.284

In order for the disjoint-PolyNet to be able to express the class of parity problems, we assume that285

the set S of size k in the (n, k)-parity problem is selected such that exactly one index belongs to each286

7We assume for simplicity that n is divisible by k.
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Figure 4: Parity as a sandbox for understanding the effects of model size and dataset size. Left:
Success times vs. network width r on a fixed (40, 3)-parity task: in accordance with the theory,
parallelization experiences diminishing returns (unlike expected success times for random search,
shown in green). Underparameterized models (r = 1, 2) were considered successful upon reaching
55% accuracy. Right: Training curves for an identical setup ((50, 3)-parity task, architecture, and
training algorithm), varying only the sample size m. The two center panels display “grokking”: a
large gap between the time to zero train error vs. zero test error.

disjoint partition, that is, for all i ∈ [k], S ∩ Pi = 1. We refer to this problem as the (n, k)-disjoint287

parity problem. Note that there are still (n′)k = (n/k)k different possibilities for set S under this288

restriction. For fixed k, these represent a constant portion of the
(
n
k

)
≈ (ne/k)k (by Stirling’s289

approximation) possibilities for S in the general non-disjoint case.290

Consider training a disjoint-PolyNet w.r.t. the correlation loss. WLOG, let S = {1, n′ + 1, . . . , (k −291

1)n′ + 1} and e1 = (1, 0, ..0). The population gradient is non-zero at i iff i ∈ S: gi(w1:k) =292

E [∇wiℓ(f(x;w1:k), y)] = −E
[
y
(∏

j ̸=i w
⊤
j xPj

)
xPi

]
= −

(∏
j ̸=i wj,1

)
e1.293

Now we consider the gradient flow dynamics of disjoint-PolyNet, which provide a mathematically294

tractable case study for the trajectory of sparse parity learning. For each i ∈ [k], in this section295

we treat wi as a function from R≥0 → Rn′
which satisfies the following differential equation:296

ẇi = −gi(w1:k(t)). For clarity of exposition, assume all-ones initialization.8 Then all of the relevant297

weights {wi,1 : i ∈ [k]} follow the same trajectory, which we denote by v : R≥0 → R. By analyzing298

the resulting differential equations, we can formally exhibit “phase transition”-like behavior in the299

fully deterministic gradient flow setting.300

Theorem 7 (Gradient flow on disjoint-PolyNets). Suppose k ≥ 3. Let T (.49) be the time it takes301

for error to fall below .49, and let T (0) be the time it takes to reach zero error. Then T (.49)
T (0) =302

1−O
(
(n′)1−k/2

)
.303

In other words, the network takes much longer to reach slightly better than trivial accuracy than it304

takes to go from slightly better than trivial to perfect accuracy.305

We can also analyze the trajectory of disjoint-PolyNets trained with online SGD, confirming that a306

neural network trained with batch size 1 SGD can learn k-sparse parities within nO(k) iterations.307

Theorem 8 (SGD on disjoint-PolyNets). Suppose we train a disjoint-PolyNet, initialized as above,308

with online SGD. Then there exists an adaptive learning rate schedule such that for any ϵ > 0, with309

probability .99, the error falls below ϵ within Õ
(
(n′)(2k−1) log(1/ϵ)

)
steps.310

Extended versions of these theorems, along with proofs, can be found in Appendix B.3.311

5 Hidden progress: discussion and additional experiments312

In this section, we advocate for sparse parities as an idealized testbed for understanding algorithms313

and phenomena in modern deep learning. These are accompanied by experimental vignettes which314

are auxiliary to the core results from Section 3, with more systematic studies deferred to future work.315

Details are given in Appendix D.316

A progress measure for parity. To begin, the black-box experiments in Section 3 suggest that317

random search is the incorrect model of SGD’s behavior in this setting. Using the theoretical insight318

8Results for ±1 initialization and Gaussian initialization are qualitatively similar and can be found in the
Appendix.
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that amplifying a precise initial population gradient suffices for learning parities, we construct one319

possible progress measure, which is a function of the sequence of weights w0, . . . wt ∈ Rn so far:320

ρ(w0:t) := ∥wt − w0∥∞, using the fact that wt −w0 is an estimate for the initial population gradient321

in the linearized setting. Figure 3 shows how gradual weight movement (and thus, progress) can be322

hidden behind plateauing losses.323

Roles of overparameterization vs. oversampling. An interesting consequence of our analysis is that324

it illuminates scaling behaviors with respect to a third fundamental resource parameter: model size,325

which we study in terms of network width r. If SGD operated by a “random search” mechanism, one326

would expect width to provide a parallel speedup. Instead, we SGD sequentially amplifies progress.327

The sharp lower tails in Figure 2 (left) imply that running r identical copies of SGD does not give328

(1/r)× speedups; more directly, in Figure 4 (left), convergence times for sparse parities empirically329

plateau at large model sizes.330

It is a significant challenge to understand the interactions between network depth and computation,331

and largely outside the scope of this work. However, in Appendix C.7, we provide a brief note on332

using parities and polynomial-activation MLPs to construct a simple counterexample to the “deep333

only works if shallow is good” principle of (48), demonstrating a case where a deep network can get334

near-perfect accuracy even when greedy layerwise training (e.g. (13)) cannot beat trivial performance.335

Learning and grokking in the finite-sample multi-pass setting. The main theoretical and empirical336

results in this work consider online learning algorithms which couple the resources of training time337

and independent samples. However, due to the computational-statistical gap in parity learning, these338

positive results are suboptimal in terms of sample efficiency. We find that minibatch SGD (with339

weight decay) can empirically solve sparse parities, even from a sample of size m ≪ nk. For small340

values of m, we reliably observe the grokking phenomenon (55): overfitting for a long time, then341

a delayed phase transition for the generalization error; see the two center panels of Figure 4 (right).342

6 Conclusion343

This work puts forward parity learning as a stylized test case to explore some of the puzzling features344

of the role of computational (as opposed to statistical) resources in deep learning. These include345

discontinuous improvements (a.k.a. emergent capabilities), feature learning, and universality of346

architectures. In particular, we show that deep learning on parities exhibits a phase transition behavior,347

that it is successfully learned by a variety of deep-net architectures, and that this success cannot be348

explained as a “random exhaustive search”, nor through frameworks such as the neural tangent kernel349

or layer-by-layer learning.350

However, there are more experimental and theoretical questions, even for this simplified case of parity351

learning. Our focus in this work was on the online learning case, where training time and samples352

arise in tandem. However, we believe it would be instructive to investigate parity learning when three353

resources of samples, time, and model size are scaled separately. Some very preliminary findings354

along these lines are presented in Section 3.355

Extending our theoretical results to the small-batch setting, as well as to more architectures, is an356

open problem. Resolving it would require a better understanding of anti-concentration (lower bound357

on deviation from mean) of Fourier coefficients, a phenomenon that is much less studied than the358

concentration of these coefficients. We would also want to extend the analysis beyond parities to359

tasks that are not aligned with the elementary basis such as low-rank tensor recovery.360

Another important follow-up direction is understanding the extent that these insights extend from361

parity learning to real-world problems, as well as the extent into which non-synthetic tasks (in,362

e.g., natural language processing and program synthesis) embed within them parity-like subtasks of363

exhaustive combinatorial search.364

Broader impact. This work seeks to contribute to the foundational understanding of computational365

scaling behaviors in deep learning. Our theoretical and empirical analyses are in a heavily-idealized366

synthetic problem setting. Hence, we see no direct societal impacts of the results in this study.367
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(b) Did you mention the license of the assets? [N/A]572
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(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]573

(d) Did you discuss whether and how consent was obtained from people whose data you’re574

using/curating? [N/A]575

(e) Did you discuss whether the data you are using/curating contains personally identifiable576

information or offensive content? [N/A]577

5. If you used crowdsourcing or conducted research with human subjects...578

(a) Did you include the full text of instructions given to participants and screenshots, if579

applicable? [N/A]580

(b) Did you describe any potential participant risks, with links to Institutional Review581

Board (IRB) approvals, if applicable? [N/A]582

(c) Did you include the estimated hourly wage paid to participants and the total amount583

spent on participant compensation? [N/A]584
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