
Under review as a conference paper at ICLR 2021

DEEP CURVATURE SUITE

Anonymous authors

Paper under double-blind review

ABSTRACT

Despite providing rich information into neural networks geometry aiding in their
understanding and applications in second order optimisation, accessing curvature
information is still a daunting engineering challenge and hence inaccessible to
most practitioners. In some cases, proxy sampled diagonal approximations, which
we show on both real and synthetic examples can be arbitrarily bad, are employed
instead. We hence provide an open-source software package, the Deep Curvature
Suite to the community. Our goal is to enable easy access to curvature informa-
tion for real networks and datasets, not just toy examples. Beyond the calculation
of a highly accurate moment matched approximation of the Hessian spectrum
using the Lanczos algorithm, our package provides extensive loss surface visual-
isation, the calculation of the gradient/Hessian variance and includes second or-
der deep learning optimisers. As a further contribution, we address and disprove
many common misconceptions in the Machine Learning literature, namely that
the Lanczos algorithm learns eigenvalues from the top down. We also prove using
high dimensional concentration inequalities that for specific classes of matrices a
single random vector is sufficient for accurate spectral estimation, which informs
our Algorithm design choice and spectral visualisation method. We showcase our
package practical utility on a series of examples based on realistic modern neural
networks tested on CIFAR-10/100 datasets.

1 INTRODUCTION

The success of Deep Neural Networks (DNNs) trained with stochastic gradient descent (SGD) based
optimizers on a range of tasks, has led to an explosion in the availability of easy to use out of the
box high performance software implementations. Automatic differentiation packages such as Ten-
sorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2017) have become widely adopted, with
higher level packages allowing users to state their model, dataset and optimiser in a few lines of code
(Chollet, 2015), effortlessly achieving state of the art performance. However, the pace of develop-
ment of software extracting second order information, representing the curvature at a point in weight
space, has not kept abreast. Researchers aspiring to evaluate or use curvature information need to
implement their own libraries, which are rarely shared or kept up to date. Naive implementations are
computationally intractable for all but the smallest of models. Hence, researchers typically either
completely ignore curvature information or use highly optimistic approximations, such as the diag-
onal elements of the matrix or of a surrogate matrix, with limited justification or empirical analysis
of the harshness of the aforementioned approximations Chaudhari et al. (2016); Dangel et al. (2019)
The curvature at a point in weight-space informs us about the local conditioning of the problem (i.e
the ratio of the largest to smallest eigenvalues �1

�P
). This determines the rate of convergence for first

order methods and informs us about the optimal learning and momentum rates (Nesterov, 2013).
The most common areas where curvature information is employed are analyses of the Loss Surface

and Newton type methods in optimization.

Loss surface visualization of deep neural networks have often focused on two dimensional
slices of random vectors (Li et al., 2017) or the changes in the loss traversing a set of random vectors
drawn from the d-dimensional Gaussian distribution (Izmailov et al., 2018). Whilst both of these
approaches have been informative, it is not clear that these high dimensional loss surfaces, often
containing millions or billions of dimensions, can be well captured in this manner. Recent empirical
analyses of the neural network loss surfaces invoking full eigen-decomposition (which captures the
full dimensionality of the surface at a particular point in weight space) (Sagun et al., 2016; 2017)

1



Under review as a conference paper at ICLR 2021

have been limited to toy examples with < 5000 parameters. Other works have used the diagonal
of the Fisher information matrix (Chaudhari et al., 2016), an assumption we will challenge in this
paper. From a practical perspective, specific properties of the loss surface not captured by the afore-
mentioned approaches, such as the flatness such as the trace, Frobenius and spectral norm have been
used to characterise the generalisation of a solution found by SGD (Wu et al., 2018; Izmailov et al.,
2018; He et al., 2019; Jastrzkebski et al., 2017; 2018; Keskar et al., 2016). Under a Bayesian and
minimum description length argument (Hochreiter and Schmidhuber, 1997) flatter minima should
generalise better than sharper minima. These properties are extremely easy in principle to estimate,
at a computational cost of a small multiple of gradient evaluations. However the calculation of these
properties are not typically included in standard Deep Learning frameworks, which limits the ability
of researchers to undertake such analysis.

From a theoretical stand point the full spectrum of Deep Neural Networks could in principle be used
to validate/invalidate novel theoretical contributions. Analysis relating the loss surface to spin-glass
models from condensed matter physics and random matrix theory (Choromanska et al., 2015b;a)
rely on a number of unrealistic assumptions, such as input independence. Since such an assumption
is clearly not true, one potential verification of the practical applicability of these results would
be to visualise the spectra of large real networks and commonly used datasets to evaluate whether
they match those of random matrices. Such matrices have closed analytical formulas describing
their spectra (Tao, 2012; Akemann et al., 2011) and statistical tests comparing the two could be
undertaken .

Other important areas of loss surface investigation include understanding the effectiveness of batch
normalization (Ioffe and Szegedy, 2015). Recent convergence proofs (Santurkar et al., 2018) bound
the maximal eigenvalue of the Hessian with respect to the activations and bounds with respect to the
weights on a per layer basis. Bounds on a per layer basis do not imply anything about the bounds
of the entire Hessian and furthermore it has been argued that the full spectrum must be calculated to
give insights on the alteration of the landscape (Kohler et al., 2018).

Second Order Optimisation Methods solve the minimisation problem for the loss, L associated
with parameters p and perturbation d to the second order in Taylor expansion,

d
⇤ = argmin

d
L(p+ d) = argmin

d
L(p+ d) = argmin

d
L(p) +rL

T
d+ 1

2d
T
H̄d (1)

Where instead of the Hessian H = rrL(p) 2 Rn⇥n, a surrogate positive definite approximation
to the Hessian H̄ , such as the (Generalised) Gauss-Newton (Martens, 2010; Martens and Sutskever,
2012), is employed so to make sure the minimum is lower bounded; its solution is

d = �H̄
�1

rL(p) = �

NX

i

1

�i
uiu

T
i rL(p) (2)

where ui correspond to the generalised Hessian eigenvectors. The parameters are updated with
p = p�↵d, in which ↵ is the global learning rate. For some common activations and loss functions
typical in deep learning, such as the cross-entropy loss and sigmoid activation the generalised Gauss-
Newton is equivalent to the Fisher information matrix (Pascanu and Bengio, 2013). The Hessian may
be expressed in terms of the activation � at the output of the final layer f(x) using the chain rule as

Hbatch(w)ij =
NX

b=1

✓ dyX

k=0

dyX

l=0

@
2
�

@fl(x)@fk(x)
(f(x))

@fl(x)

@xj

@fk(x)

@xi
+

dyX

k=0

@�

@xj
(f(x))

@
2
fk(x)

@xj@xi

◆
/N

(3)
The first term on the LHS of Equation 3 is known as the Generalised Gauss-Newton matrix. De-
spite the success of second order optimisation methods using the Generalised Gauss Newton for
difficult problems on which SGD is known to stall, such as recurrent neural networks (Martens and
Sutskever, 2012), or auto-encoders (Martens, 2016). Researchers wanting to implement second or-
der methods such as (Vinyals and Povey, 2012; Martens and Sutskever, 2012; Dauphin et al., 2014)
face the aforementioned problems of difficult implementation. As a small side note, Bayesian neu-
ral networks using the Laplace approximation feature the Hessian inverse multiplied by a vector
(Bishop, 2006).

2



Under review as a conference paper at ICLR 2021

1.1 CONTRIBUTIONS

In this paper, we make calculating and visualizing curvature information as simple as calculating
the gradient at a saved checkpoint in weight-space. Specifically we combine fast Hessian vector
products (Pearlmutter, 1994), advanced linear algebraic techniques (Golub and Meurant, 1994) and
high dimensional geometry (Hutchinson, 1990), to derive highly accurate moment matched discrete
approximations to the neural network spectrum in a fraction of the network training time. The com-
putational complexity of our approach is O(mP ), where m is the number of moments which we
wish to match, P is the number of model parameters, as opposed to full exact eigendecomposition
which has a numerical cost of O(P 3), which is infeasible for large neural networks. We use the GPy-
torch implementation (Gardner et al., 2018) of the Lanczos algorithm (Meurant and Strakoš, 2006),
which we introduce in Section 4 and discuss the most common misconceptions in the literature in
Section 4.

Our package supports the Hessian as well as the commonly used Generalsed Gauss Newton approx-
imation (Martens, 2010; Martens and Sutskever, 2012; Henriques et al., 2019). Our code allows for
the use of batch normalization (Ioffe and Szegedy, 2015) in neural networks. Whilst we keep batch
norm training mode on as default, this default setting can be altered easily. We provide additional
novel theoretically justified visualisations for both the moment matched spectrum and the loss sur-
face traversed in those directions. Our package further allows for the calculation of the variance of
the gradient and the variance of the Hessian, the latter has been related to the stability of SGD in Wu
et al. (2018). As a minor contribution, we also include two stochastic Lanczos based optimisers in
our code.

Related Work: Recent work making curvature information more available, again through diago-
nal approximations, explicitly disallows the use of batch normalization (Dangel et al., 2019). Our
software package extends seamlessly to batch normalization, allowing for evaluation in both train
and eval mode. Whilst the scope of Dangel et al. (2019) is slightly different to our work, as their
focus is primarily on the ability to compute these quantities at speed online for simple models, in
Section 5 we explicitly compare their diagonal MC approximations against our method for spectral
visualisation on a range of synthetic and real neural networks and find these approximations to be
inadequate for spectral analysis. Independent work has also considered using the Lanczos algorithm
for Hessian computation Yao et al. (2019); Ghorbani et al. (2019); Papyan (2018); Izmailov et al.
(2019). However neither of these packages includes a similar level of focus on the visualisation as-
pect which we integrate. Furthermore to the best of our knowledge, the computation of the Hessian
variance Wu et al. (2018) and in-built reference stochastic second order optimisers is not available
in any other package.

2 DEEP CURVATURE

We introduce to our package, the Deep Curvature suite, a software package that allows analysis
and visualisation of deep neural network curvature. The main features and functionalities of our
package are:

• Network training and evaluation we provide a range of pre-built modern popular neu-
ral network structures, such as VGG and variants of ResNets, and various optimisation
schemes in addition to the ones already present in the PyTorch frameworks, such as K-
FAC and SWATS. These facilitates faster training and evaluation of the networks (although
it is worth noting that any PyTorch-compatible optimisers or architectures can be easily
integrated into our analysis framework).

• Eigenspectrum analysis of the curvature matrices Powered by the Lanczos techniques
implemented in GPyTorch (Gardner et al., 2018) and outlined in Section 3, with a sin-
gle random vector we use the Pearlmutter matrix-vector product trick for fast inference
of the eigenvalues and eigenvectors of the common curvature matrices of the deep neural
networks. In addition to the standard Hessian matrix, we also include the feature for infer-

3



Under review as a conference paper at ICLR 2021

ence of the eigen-information of the Generalised Gauss-Newton matrix, a commonly used
positive-definite surrogate to Hessian1.

• Advanced Statistics of Networks In addition to the commonly used statistics to evaluate
network training and performance such as the training and testing losses and accuracy, we
support computations of more advanced statistics: For example, we support squared mean
and variance of gradients and Hessians (and GGN), squared norms of Hessian and GGN,
L2 and L-inf norms of the network weights and etc. These statistics are useful and relevant
for a wide range of purposes such as the designs of second-order optimisers and network
architecture.

• Visualisations For all main features above, we include accompanying visualisation tools.
In addition, with the eigen-information obtained, we also feature visualisations of the loss

landscape by studying the sensitivity of the neural network to perturbations of weights.
While similar tools have been available, we would like to emphasise that one key difference
is that, instead of the random directions as featured in some other packages, we explicitly
perturb the weights in the eigenvector directions, which should yield more informative
results.

Package Structure The main interface functions are organsed as followed:

• ./core The functions under core directories are the main analysis tools of the pack-
age. train network allows network training and saving of the required statistics
for subsequent spectrum learning. Based on the output of it, we additionally include
tools for spectrum analysis (compute eigenspectrum) and advanced loss statistics
(such as covariance of gradients and second order information like Hessian variance) in
compute loss stats and build loss landscape.
We provide some pre-built network architectures (such as VGG and ResNet architectures)
and optimizers apart from PyTorch natives (such as K-FAC, SWATS optimizers). We addi-
tionally support Stochastic Weight Averaging proposed in (Izmailov et al., 2018). However,
it is worth noting that any PyTorch compatible networks and optimizers can be easily inte-
grated in our framework.

• ./visualise This directory defines the various pre-defined visualisation functions for differ-
ent purposes, including the visualisation of training, spectrum and the loss landscape.

To facilitate a quick start of our package, we have included an illustrated example of analysis on the
VGG-16 network on CIFAR-100 dataset.

3 AN ILLUSTRATED EXAMPLE

We give an illustration on an example of using the MLRG-DeepCurvature package and more details,
including detailed documentation of each user function and the output of this particular example,
can be found at our open-source repository. We begin by importing the necessary functions and
packages:

from c o r e import *
from v i s u a l i s e import *
import m a t p l o t l i b . p y p l o t a s p l t

In this example, we train a VGG16 network on CIFAR-100 for 100 epochs. In a test computer with
AMD Ryzen 3700X CPU and NVIDIA GeForce RTX 2080 Ti GPU, each epoch of training takes
less than 10 seconds.

This step generates a number of training statistics files (starting with stats-) and checkpoint files
(checkpoint-00XXX.pt, where XXX is the epoch number) that contain the state dict of
the optimizer and the model. We may additionally visualise the training processes by looking at the

1The computation of the GGN-vector product is similar with the computational cost of two backward passes
in the network. Also, GGN uses forward-mode automatic differentiation (FMAD) in addition to the commonly
employed backward-mode automatic differentiation (RMAD). In the current PyTorch framework, the FMAD
operation can be achieved using two equivalent RMAD operations.

4



Under review as a conference paper at ICLR 2021

t r a i n n e t w o r k (
d i r = ’ r e s u l t / VGG16−CIFAR100 / ’ ,
d a t a s e t = ’ CIFAR100 ’ ,
d a t a p a t h = ’ d a t a / ’ ,
epochs =100 ,
model= ’VGG16 ’ ,
o p t i m i z e r = ’SGD ’ ,
o p t i m i z e r k w a r g s ={
’ l r ’ : 0 . 0 3 ,
’momentum ’ : 0 . 9 ,
’ w e i g h t d e c a y ’ : 5e −4})

c o m p u t e e i g e n s p e c t r u m (
d a t a s e t = ’ CIFAR100 ’ ,
d a t a p a t h = ’ d a t a / ’ ,
model= ’VGG16 ’ ,
c h e c k p o i n t p a t h = ’ r e s u l t / VGG16−CIFAR100 /

c h e c k p o i n t −00100. p t ’ ,
s a v e s p e c t r u m p a t h = ’ r e s u l t / VGG16−CIFAR100 /

s p e c t r a / spec t rum −00100 − g g n l a n c z o s ’ ,
s a v e e i g v e c =True ,
l a n c z o s i t e r s =20 ,
c u r v a t u r e m a t r i x = ’ g g n l a n c z o s ’ , )

Table 1: Training a Neural Network and Calculating the Eigenspectrum using the Deep Curvature Suite package

p l o t s p e c t r u m ( ’ l a n c z o s ’ , p a t h = ’
r e s u l t / VGG16−CIFAR100 / s p e c t r a /
spec t rum −00100 − g g n l a n c z o s . npz ’ )

p l t . show ( )

Table 2: Eigenspectrum plotting code and corresponding stem plot

basic statistics by calling plot training function. With the checkpoints generated, we may now
compute analyse the eigenspectrum of the curvature matrix evaluated at the desired point of training.
For example, if we would like to evaluate the Hessian or Generalised Gauss Newton approximation
to the Hessian matrix at the end of the training with 20 Lanczos iterations, we simply run the Eigen-
spetrum Computation code given in Table 1. This function call saves the spectrum results (including
eigenvalues, eigenvectors and other related statistics) in the save spectrum path path string
defined. To visualise the spectrum as stem plot similar to Figure 2, we simply call:

Finally, with the eigenvalues and eigenvectors computed, we might be interested in knowing how
sensitive the network is to perturbation along these directions. To achieve this, we first construct a
loss landscape by setting the number of query points and maximum perturbation to apply. To achieve
that, we call the code given in Table 3. In this example, we set the maximum perturbation to be 1
(dist argument) and number of query points along each direction to be 21 (n points argument).
The corresponding plots in Training and Testing loss are also shown.

b u i l d l o s s l a n d s c a p e (
d a t a s e t = ’ CIFAR100 ’ ,
d a t a p a t h = ’ d a t a / ’ ,
model= ’VGG16 ’ ,
d i s t = 1 . , n p o i n t s =21 ,
s p e c t r u m p a t h = ’ spec t rum

−100− h e s s i a n ’ ,
c h e c k p o i n t p a t h = ’

c h e c k p o i n t −100 . p t ’ ,
s a v e p a t h = ’ l a n d s c a p e −100 .

npz ’
p l o t l o s s l a n d s c a p e ( ’

l a n d s c a p e −100 . npz ’ )
p l t . show ( ) )

Table 3: Loss surface visualization along the sharpest Hessian eigenvectors with the Deep Curvature Suite

3.1 SIMPLICITY OF SECOND ORDER OPTIMISATION

To enable researchers to experiment with second order optimisation algorithms for Deep Neural Net-
works, we implement a Lanczos based optimiser (which takes the absolute Hessian Dauphin et al.

5



Under review as a conference paper at ICLR 2021

t r a i n n e t w o r k (
d i r = ’VGG16−CIFAR100 / ’ ,
d a t a s e t = ’ CIFAR100 ’ ,
d a t a p a t h = ’ d a t a / ’ , epochs =100 ,
model= ’VGG16 ’ , o p t i m i z e r = ’SGD ’ ,
o p t i m i z e r k w a r g s ={
’ l r ’ : 0 . 0 1 ,
’momentum ’ : 0 . 9 ,
’ w e i g h t d e c a y ’ : 0
’ b a t c h s i z e ’ : 128} )

t r a i n n e t w o r k (
d i r = ’VGG16−CIFAR100 / ’ ,
d a t a s e t = ’ CIFAR100 ’ ,
d a t a p a t h = ’ d a t a / ’ , epochs =100 ,
model= ’VGG16 ’ , o p t i m i z e r = ’LancGN ’ ,
o p t i m i z e r k w a r g s ={
’ l r ’ : 1 ,
’ damping ’ : 10 ,
’ w e i g h t d e c a y ’ : 0
’ b a t c h s i z e ’ : 128
’ c u r v a t u r e b a t c h s i z e ’ : 128} )

Table 4: Comparison of SGD training and Second Order Optimisation using the Deep Curvature Suite

(2014), or Generalised Gauss Newton as input). The code for running this optimiser is summarised
in Table 4. We plot the training error of the VGG-16 network on CIFAR-100 dataset (Which has
16m parameters) against epoch in Figure 1. We keep the ratio of damping constant to learning rate
constant, where � = 10↵, for a variety of learning rates in {1, 0.1, 0.01, 0.001, 0.0001} with a batch
size of 128 for both the gradient and the curvature, all of which post almost identical performance.
We also compare against different learning rates of Adam and the best grid searched learning rate of
SGD, both of which converge significantly slower per iteration compared to our stochastic Newton
methods.

Figure 1: Training Error of stochastic Lanczos Newton methods on CIFAR-100 VGG-16 against baselines.

4 LEARNING TO LOVE LANCZOS

The Lanczos Algorithm, on which our package is based, (Algorithm 1) is an iterative algorithm for
learning a subset of the eigenvalues/eigenvectors of any Hermitian matrix, requiring only matrix
vector products. It can be regarded as a far superior adaptation of the power iteration method, where
the Krylov subspace K (H,v) = span{v,Hv

,H
2
v...} is orthogonalised using Gram-Schmidt.

Beyond having improved convergence to the power iteration method (Bai et al., 1996) by storing the
intermediate orthogonal vectors in the corresponding Krylov subspace, Lanczos produces estimates
of the eigenvectors and eigenvalues of smaller absolute magnitude, known as Ritz vectors/values.
Despite its known superiority to the power iteration method and relationship to orthogonal poly-
nomials and hence when combined with random vectors the ability to estimate the entire spectrum
of a matrix, these properties are often ignored or forgotten by practitioners, we hence include a
full primer in Appendix E. We compare against diaognal approximations for random and synthetic
matrices in Appendix C. We also explicitly debunk some key persistent myths, given below.

• We can learn the negative and interior eigenvalues by shifting and inverting the matrix sign
H ! �H + µI

• Lanczos learns the largest m [�i,ui] pairs of H 2 RP⇥P with high probability (Dauphin
et al., 2014)

Since these two related beliefs are prevalent, we disprove them explicitly in this section, with Theo-
rems 1 and 2.
Theorem 1. The shift and invert procedure H ! �H + µI , changes the Eigenvalues of the Tri-
diagonal matrix T (and hence the Ritz values) to �i = ��i + µ

6



Under review as a conference paper at ICLR 2021

Proof. Following the equations from Algorithm 1

w
T
1 = (�H + µI)v1 & ↵1 = v

T
1 Hv1 + µI

w2 = w1 � ↵1v1 = (H + µI)v1 � (vT
1 Hv1 + µI)v1

w2 = (H � v
T
1 Hv1)v1 & v2 = w2/||w2||

↵2 = v
T
2 (�H + µI)v2 = �v

T
2 Hv2 + µ

�2 = ||w2||

(4)

Assuming this for m � 1, and repeating the above steps for m we prove by induction and finally
arrive at the modified tridiagonal Lanczos matrix T̃

T̃ = �T + µI

�̃i = ��i + µ 81  i  m

(5)

Remark. No new Eigenvalues of the matrix H are learned. Although it is clear that the addition of
the identity does not change the Krylov subspace, such procedures are commonplace in code per-
taining to papers attempting to find the smallest eigenvalue. This disproves the first misconception.
Theorem 2. For any matrix H 2 RP⇥P such that �1 > �2 > ..... > �P and

Pm
i=1 �i <PP

i=m+1 �i in expectation over the set of random vectors v the m eigenvalues of the Lanczos Tridi-
agonal matrix T do not correspond to the top m eigenvalues of H

Proof. Let us consider the matrix H̃ = H �
�m+1+�m

2 I ,
⇢
�i > 0, 8i  m

�i < 0, 8i > m
(6)

Under the assumptions of the theorem, Tr(H̃) < 0 and hence by Theorem 8 and Equation 24 there
exist no wi > 0 such that

mX

i=1

wi�
k
i =

1

P

PX

i=1

�
k
i 8 1  k  m (7)

is satisfied for k = 1, as the LHS is manifestly positive and the RHS is negative. By Theorem 1 this
holds for the original matrix H .

Remark. Given that Theorem 2 is satisfied over the expectation of the set of random vectors, which
by the CLT is realised by Monte Carlo draws of random vectors as d ! 1 the only way to really
span the top m eigenvectors is to have selected a vector which lies in the m dimensional subspace
of the P dimensional problem corresponding to those vectors, which would correspond to knowing
those vectors a priori, defeating the point of using Lanczos at all.
Remark. Given the relationship between the moments of the spectral density and the expectation
over the set of random vectors, one may be curious to ask how we expect the deviation to be de-
pending on the number of random vectors actually used in practice. Whilst usually packages using
Lanczos use a number of random vectors (increasing the corresponding computational cost), in
Appendix A we demonstrate that we expect the difference to reduce as we increase the problem
dimension P . This informs our choice of only using a single random vector in our package, we
compare results for different random vectors in Appendix A and find minimal differences.

5 NEURAL NETWORK EXAMPLES

We showcase our spectral learning algorithm and visualization tool on real networks trained on real
data-sets and we test on VGG networks (Simonyan and Zisserman, 2014). We train our neural
networks using stochastic gradient descent with momentum ⇢ = 0.9, using a linearly decaying
learning rate schedule. The learning rate at the t-th epoch is given by:

↵t =

8
><

>:

↵0, if t
T  0.5

↵0[1�
(1�r)( t

T �0.5)
0.4 ] if 0.5 <

t
T  0.9

↵0r, otherwise
(8)

7



Under review as a conference paper at ICLR 2021

where ↵0 is the initial learning rate. T = 300 is the total number of epochs budgeted for all
experiments. We set r = 0.01. We explicitly give an example code run in F We compare our
method against recently developed open-source tools which calculate on the fly diagonal Hessian
and Generalised Gauss-Newton diagonal approximations (Dangel et al., 2019).

5.1 VGG-16 CIFAR-100 DATASET

We train a 16-layer VGG network, comprising of P = 15, 291, 300 parameters on the CIFAR-100
dataset, using ↵0 = 0.05. Even for this relatively small model, the open-source Hessian and GGN
exact diagonal computations require over 125GB of GPU memory and so to avoid re-implementing
the library to support multiple GPUs and node communication we use the Monte Carlo approxima-
tion to the GGN diagonal against both our GGN-Lanczos and Hessian-Lanczos spectral visualiza-
tions. We plot a histogram of the Monte Carlo approximation of the diagonal GGN (Diag-GGN)
against both the Lanczos GGN (Lanc-GGN) and Lanczos Hessian (Lanc-Hess) in Figure 2. Note
that as the Lanc-GGN and Lanc-Hess are displayed as stem plots (with the discrete spectral density
summing to 1 as opposed to the histogram area summing to 1).

(a) Diag-GGN & Lanc-GGN (b) Diag-GGN & Lanc-Hess

Figure 2: Diagonal Generalised Gauss Newton monte carlo approximation (Diag-GGN) against m = 100 Lanczos using Gauss-Newton
vector products (Lanc-GGN) or Hessian vector products (Lanc-Hess)

We note that the Gauss-Newton approximation quite closely resembles its Hessian counterpart, cap-
turing the majority of the bulk and the outlier eigenvectors at �1 ⇡ 6.88 and the triad near �i ⇡ 2.29.
The Hessian does still have significant spectral mass on the negative axis, around 37%. However
most of this is captured by a Ritz value at �0.0003, with this removed, the negative spectral mass
is only 0.05%. However the Diag-GGN gives a very poor spectral approximation. It vastly over-
estimates the bulk region, which extends well beyond � ⇡ 1 implied by Lanczos and adds many
spurious outliers between 3 and the misses the largest outlier of 6.88. Computational Cost Using a
single NVIDIA GeForce GTX 1080 Ti GPU, the Gauss-Newton takes an average 26.5 seconds for
each Lanczos iteration with the memory useage 2850Mb. Using the Hessian takes an average of
27.9 seconds for each Lanczos iteration with 2450Mb memory usage.

6 CONCLUSION

We introduce the Deep Curvature suite in PyTorch framework, based on the Lanczos algorithm
implemented in GPyTorch (Gardner et al., 2018), that allows deep learning practitioners to learn
spectral density information as well as eigenvalue/eigenvector pairs of the curvature matrices at
specific points in weight space. Together with the software, we also include a succinct summary
of the linear algebra, iterative method theory including proofs of convergence and misconceptions
and stochastic trace estimation that form the theoretical underpinnings of our work. Finally, we
also included various examples of our package of analysis of both synthetic data and real data with
modern neural network architectures.

8


	Introduction
	Contributions

	Deep Curvature
	An Illustrated Example
	Simplicity of Second Order Optimisation

	Learning to love Lanczos
	Neural Network Examples
	VGG-16 CIFAR-100 Dataset

	Conclusion
	Effect of Varying Random Vectors
	Why we don't kernel smooth

	Local loss landscape
	Examples on Small Random Matrices
	Wigner Matrices
	Marcenko-Pastur
	Comparison to Diagonal Approximations
	Synthetic Example

	Mathematical Definitions
	Lanczos Algorithm Primer
	Why does anyone use Power Iterations?
	The Problem of Moments: Spectral Density Estimation Using Lanczos
	Computational Complexity

	Code Run
	Running the Example C100
	Running the Example C10


