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Abstract

Randomized smoothing has been successfully applied to classification tasks on1

high-dimensional inputs, such as images, to obtain models that are provably robust2

against adversarial perturbations of the input. We extend this technique to produce3

provable robustness for functions that map inputs into an arbitrary metric space4

rather than discrete classes. Such functions are used in many machine learning5

problems like image reconstruction, dimensionality reduction, facial recognition,6

etc. Our robustness certificates guarantee that the change in the output of the7

smoothed model as measured by the distance metric remains small for any norm-8

bounded perturbation of the input. We can certify robustness under a variety of9

different output metrics, such as total variation distance, Jaccard distance, norm-10

based metrics, etc. In our experiments, we apply our procedure to create certifiably11

robust models with disparate output spaces – from sets to images – and show that12

it yields meaningful certificates without significantly degrading the performance of13

the base model.14

1 Introduction15

The study of adversarial robustness in machine learning has gained a lot of attention ever since deep16

neural networks (DNNs) have been demonstrated to be vulnerable to adversarial attacks. They are17

tiny perturbations of the input that can completely alter a model’s predictions [46, 36, 16, 25]. These18

maliciously chosen perturbations can significantly degrade the performance of a model, like an image19

classifier, and make it output almost any class that the attacker wants. However, these attacks are not20

just limited to classification problems. Recently, they have also been shown to exist for DNN-based21

models with many different kinds of outputs like images, probability distributions, sets, etc. For22

instance, facial recognition systems can be deceived to evade detection, impersonate authorized23

individuals and even render them completely ineffective [48, 45, 13]. Image reconstruction models24

have been targeted to introduce unwanted artefacts or miss important details, such as tumors in MRI25

scans, through adversarial inputs [1, 40, 5, 6]. Similarly, super-resolution systems can be made to26

generate distorted images that can in turn deteriorate the performance of subsequent tasks that rely on27

the high-resolution outputs [8, 52]. Deep neural network based policies in reinforcement learning28

problems also have been shown to succumb to imperceptible perturbations in the state observations29

[14, 21, 2, 38]. Such widespread presence of adversarial attacks is concerning as it threatens the use30

of deep neural networks in critical systems, such as facial recognition, self-driving vehicles, medical31

diagnosis, etc., where safety, security and reliability are of utmost importance.32

Adversarial defenses have mostly focused on classification tasks [24, 3, 19, 11, 34, 18, 15]. Provable33

defenses based on convex-relaxation [50, 39, 43, 7, 44], interval-bound propagation [17, 20, 12, 37]34

and randomized smoothing [9, 26, 32, 41] that guarantee that the predicted class will remain the35

same in a certified region around the input point have also been studied. Among these approaches36
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randomized smoothing scales up to high-dimensional inputs, such as images, and does not need37

access to or make assumptions about the underlying model. The robustness certificates produced38

are probabilistic, meaning that they hold with high probability. First studied by Cohen et al. in [9],39

smoothing methods sample a set of points in a Gaussian cloud around an input, and aggregate the40

predictions of the classifier on these points to generate the final output.41

While accuracy is the standard quality measure for classification, more complex tasks may require42

other quality metrics like total variation for images, intersection over union for object localization,43

earth-mover distance for distributions, etc. In general, networks can be cast as functions of the type44

f : Rk → (M,d) which map a k dimensional real-valued space into a metric space M with distance45

function d : M ×M → R≥0. In this work, we extend randomized smoothing to obtain provable46

robustness for functions that map into arbitrary metric spaces. We generate a robust version f̄ such47

that the change in its output, as measured by d, is small for a small change in its input. More formally,48

given an input x and an `2-perturbation size ε1, we produce a value ε2 with the guarantee that, with49

high probability,50 ∀x′ s.t. ‖x− x′‖2 ≤ ε1, d(f̄(x), f̄(x′)) ≤ ε2.

Figure 1: Center smoothing.

Our contributions: We develop center smoothing, a technique51

to make functions like f provably robust against adversarial52

attacks. For a given input x, center smoothing samples a col-53

lection of points in the neighborhood of x using a Gaussian54

smoothing distribution, computes the function f on each of55

these points and returns the center of the smallest ball enclos-56

ing at least half the points in the output space (see figure 1).57

Computing the minimum enclosing ball in the output space is58

equivalent to solving the 1-center problem with outliers (hence59

the name of our procedure), which is an NP-complete problem60

for a general metric [42]. We approximate it by computing61

the point that has the smallest median distance to all the other62

points in the sample. We show that the output of the smoothed63

function is robust to input perturbations of bounded `2-size.64

Although we defined the output space as a metric, our proofs only require the symmetry property and65

triangle inequality to hold. Thus, center smoothing can also be applied to pseudometric distances66

that need not satisfy the identity of indiscernibles. Many distances defined for images, such as total67

variation, cosine distance, perceptual distances, etc., fall under this category. Center smoothing steps68

outside the world of `p metrics, and certifies robustness in metrics like IoU/Jaccard distance for object69

localization, and total-variation, which is a good measure of perceptual similarity for images. In our70

experiments, we show that this method can produce meaningful certificates for a wide variety of71

output metrics without significantly compromising the quality of the base model.72

Related Work: Randomized smoothing has been extensively studied for classification problems to73

obtain provably robust models against many different `p [9, 26, 41, 47, 33, 31, 27, 30] and non-`p74

[28, 29] threat models. Beyond classification tasks, it has also been used for certifying the median75

output of regression models [51] and the expected softmax scores of neural networks [23]. Smoothing76

a vector-valued function by taking the mean of the output vectors has been shown to have a bounded77

Lipschitz constant when both input and output spaces are `2-metrics [49]. However, existing methods78

do not generate the type of certificates described above for general distance metrics. Center smoothing79

takes the distance function of the output space into account for generating the robust output and thus80

results in a more natural smoothing procedure for the specific distance metric.81

2 Preliminaries and Notations82

Given a function f : Rk → (M,d) and a distribution D over the input space Rk, let f(D) denote83

the probability distribution of the output of f in M when the input is drawn from D. For a point84

x ∈ Rk, let x + P denote the probability distribution of the points x + δ where δ is a smoothing85

noise drawn from a distribution P over Rk and let X be the random variable for x+P . For elements86

in M , define B(z, r) = {z′ | d(z, z′) ≤ r} as a ball of radius r centered at z. Define a smoothed87

version of f under P as the center of the ball with the smallest radius in M that encloses at least half88

of the probability mass of f(x+ P), i.e.,89

f̄P(x) = argmin
z

r s.t. P[f(X) ∈ B(z, r)] ≥ 1

2
.

2



If there are multiple balls with the smallest radius satisfying the above condition, return one of the90

centers arbitrarily. Let r∗P(x) be the value of the minimum radius. Hereafter, we ignore the subscripts91

and superscripts in the above definitions whenever they are obvious from context. In this work, we92

sample the noise vector δ from an i.i.d Gaussian distribution of variance σ2 in each dimension, i.e.,93

δ ∼ N (0, σ2I).94

2.1 Gaussian Smoothing95

Cohen et al. in 2019 showed that a classifier h : Rk → Y smoothed with a Gaussian noise N (0, σ2I)96

as,97

h̄(x) = argmax
c∈Y

P [h(x+ δ) = c] ,

where Y is a set of classes, is certifiably robust to small perturbations in the input. Their certificate98

relied on the fact that, if the probability of sampling from the top class at x under the smoothing99

distribution is p, then for an `2 perturbation of size at most ε, the probability of the top class is100

guaranteed to be at least101

pε = Φ(Φ−1(p)− ε/σ), (1)
where Φ is the CDF of the standard normal distribution N (0, 1). This bound applies to any102

{0, 1}-function over the input space Rk, i.e., if P[h(x) = 1] = p, then for any ε-size perturba-103

tion x′,P[h(x′) = 1] ≥ pε.104

We use this bound to generate robustness certificates for center smoothing. We identify a ball105

B(f̄(x), R) of radius R enclosing a very high probability mass of the output distribution. One can106

define a function that outputs one if f maps a point to inside B(f̄(x), R) and zero otherwise. The107

bound in (1) gives us a region in the input space such that for any point inside it, at least half of the108

mass of the output distribution is enclosed in B(f̄(x), R). We show in section 3 that the output of the109

smoothed function for a perturbed input is guaranteed to be within a constant factor of R from the110

output of the original input.111

3 Center Smoothing112

As defined in section 2, the output of f̄ is the center of the smallest ball in the output space that113

encloses at least half the probability mass of the f(x+ P). Thus, in order to significantly change the114

output, an adversary has to find a perturbation such that a majority of the neighboring points map115

far away from f̄(x). However, for a function that is roughly accurate on most points around x, a116

small perturbation in the input cannot change the output of the smoothed function by much, thereby117

making it robust.118

Figure 2: Robustness guarantee.

For an `2 perturbation size of ε1 of an input point x, let R119

be the radius of a ball around f̄(x) that encloses more than120

half the probability mass of f(x′ + P) for all x′ satisfying121

‖x− x′‖2 ≤ ε1, i.e.,122

∀x′ s.t. ‖x− x′‖2 ≤ ε1, P[f(X ′) ∈ B(f̄(x), R)] >
1

2
, (2)

where X ′ ∼ x′ + P . Basically, R is the radius of a ball123

around f̄(x) that contains at least half the probability mass of124

f(x′ + P) for any ε1-size perturbation x′ of x. Then, we have125

the following robustness guarantee on f̄ :126

Theorem 1. For all x′ such that ‖x− x′‖2 ≤ ε1,127

d(f̄(x), f̄(x′)) ≤ 2R.

Proof. Consider the balls B(f̄(x′), r∗(x′)) and B(f̄(x), R) (see figure 2). From the definition of128

r∗(x′) and R, we know that the sum of the probability masses of f(x′+P) enclosed by the two balls129

must be strictly greater than one. Thus, they must have an element y in common. Since d satisfies the130

triangle inequality, we have:131

d(f̄(x), f̄(x′)) ≤ d(f̄(x), y) + d(y, f̄(x′))

≤ R+ r∗(x′).
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Since, the ball B(f̄(x), R) encloses more than half of the probability mass of f(x+P), the minimum132

ball with at least half the probability mass cannot have a radius greater than R, i.e., r∗(x′) ≤ R.133

Therefore, d(f̄(x), f̄(x′)) ≤ 2R.134

The above result, in theory, gives us a smoothed version of f with a provable guarantee of robustness.135

However, in practice, it may not be feasible to obtain f̄ just from samples of f(x+ P). Instead, we136

will use some procedure that approximates the smoothed output with high probability. For some137

∆ ∈ [0, 1/2], let r̂(x,∆) be the radius of the smallest ball that encloses at least 1/2 + ∆ probability138

mass of f(x+ P), i.e.,139

r̂(x,∆) = min
z′

r s.t. P[f(X) ∈ B(z′, r)] ≥ 1

2
+ ∆.

Now define a probabilistic approximation f̂(x) of the smoothed function f̄ to be a point z ∈ M ,140

which with probability at least 1−α1 (for α1 ∈ [0, 1]), encloses at least 1/2−∆ probability mass of141

f(x+ P) within a ball of radius r̂(x,∆). Formally, f̂(x) is a point z ∈M , such that, with at least142

1− α1 probability,143

P [f(X) ∈ B(z, r̂(x,∆))] ≥ 1

2
−∆.

Defining R̂ to be the radius of a ball centered at f̂(x) that satisfies:144

∀x′ s.t. ‖x− x′‖2 ≤ ε1, P[f(X ′) ∈ B(f̂(x), R̂)] >
1

2
+ ∆, (3)

we can write a probabilistic version of theorem 1,145

Theorem 2. With probability at least 1− α1,146

∀x′ s.t. ‖x− x′‖2 ≤ ε1, d(f̂(x), f̂(x′)) ≤ 2R̂,

The proof of this theorem is in the appendix, and logically parallels the proof of theorem 1.147

3.1 Computing f̂148

For an input x and a given value of ∆, sample n points independently from a Gaussian cloud149

x + N (0, σ2I) around the point x and compute the function f on each of these points. Let Z =150

{z1, z2, . . . , zn} be the set of n samples of f(x+N (0, σ2I)) produced in the output space. Compute151

the minimum enclosing ball B(z, r) that contains at least half of the points in Z. The following152

lemma bounds the radius r of this ball by the radius of the smallest ball enclosing at least 1/2 + ∆1153

probability mass of the output distribution (proof in appendix).154

Lemma 1. With probability at least 1− e−2n∆2
1 ,155

r ≤ r̂(x,∆1).

Now, sample a fresh batch of n random points and compute the 1− e−2n∆2
1 probability Hoeffding156

lower-bound p∆1
of the probability mass enclosed inside B(z, r) by conting the number of points157

that fall inside the ball, i.e., calculate the p∆1
for which, with probability at least 1− e−2n∆2

1 ,158

P [f(X) ∈ B(z, r)] ≥ p∆1 .

Let ∆2 = 1/2− p∆1
. If max(∆1,∆2) ≤ ∆, the point z satisfies the conditions in the definition of159

f̂ , with at least 1− 2e−2n∆2
1 probability. If max(∆1,∆2) > ∆, discard the computed center z and160

abstain. In our experiments, we select ∆1, n and α1 appropriately so that the above process succeeds161

easily.162

Computing the minimum enclosing ball B(z, r) exactly can be computationally challenging, as for163

certain norms, it is known to be NP-complete [42]. Instead, we approximate it by computing a ball164

β-MEB(Z, 1/2) that contains at least half the points in Z, but has a radius that is within βr units of165

the optimal radius, for a constant β. We modify theorem 1 to account for this approximation (see166

appendix for proof).167
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Algorithm 1 Smooth

Input: x ∈ Rk, σ,∆, α1.
Output: z ∈M .
Set Z = {zi}mi=1 s.t. zi ∼ f(x+N (0, σ2I)).
Set ∆1 =

√
ln (2/α1) /2n.

Compute z = β-MEB(Z, 1/2).
Re-sample Z.
Compute p∆1

.
Set ∆2 = 1/2− p∆1

.
If ∆ < max(∆1,∆2), discard z and abstain.

Algorithm 2 Certify

Input: x ∈ Rk, ε1, σ,∆, α1, α2.
Output: ε2 ∈ R.
Compute f̂(x) using algorithm 1.
Set Z = {zi}mi=1 s.t. zi ∼ f(x+N (0, σ2I)).
Compute R̃ = {d(f̂(x), f(zi)) | zi ∈ Z}.
Set p = Φ(Φ−1(1/2 + ∆) + ε1/σ).
Set q = p+

√
ln(1/α2)/2m.

Set R̂ = qth-quantile of R̃.
Set ε2 = (1 + β)R̂.

Theorem 3. With probability at least 1− α1,168

∀x′ s.t. ‖x− x′‖2 ≤ ε1, d(f̂(x), f̂(x′)) ≤ (1 + β)R̂

where α1 = 2e−2n∆2
1 .169

We use a simple approximation that works for all metrics and achieves an approximation factor of170

two, producing a certified radius of 3R̂. It computes a point from the set Z, instead of a general171

point in M , that has the minimum median distance from all the points in the set (including itself).172

This can be achieved in O(n2) steps. To see how the factor 2-approximation is achieved, consider173

the optimal ball with radius r. Each pair of points is at most 2r distance from each other. Thus, a174

ball with radius 2r, centered at one of these points will cover every other point in the optimal ball.175

Better approximations can be obtained for specific norms, e.g., there exists a (1 + ε)-approximation176

algorithm for the `2 norm [4]. For graph distances, the optimal radius can be computed exactly using177

the above algorithm. The smoothing procedure is outlined in algorithm 1.178

3.2 Certifying f̂179

Given an input x, compute f̂(x) as described above. Now, we need to compute a radius R̂ that180

satisfies condition 3. As per bound 1, in order to maintain a probability mass of at least 1/2 + ∆ for181

any ε1-size perturbation of x, the ball B(f̂(x), R̂) must enclose at least182

p = Φ

(
Φ−1

(
1

2
+ ∆

)
+
ε1
σ

)
(4)

probability mass of f(x+ P). Again, just as in the case of estimating f̄ , we may only compute R̂183

from a finite number of samples m of the distribution f(x+ P). For each sample zi ∼ x+ P , we184

compute the distance d(f̂(x), f(zi)) and set R̂ to be the qth-quantile R̃q of these distances for a q185

that is slightly greater than p (see equation 5 below). The qth-quantile R̃q is a value larger than at186

least q fraction of the samples. We set q as,187

q = p+

√
ln (1/α2)

2m
, (5)

for some small α2 ∈ [0, 1]. This guarantees that, with high probability, the ball B(f̂(x), R̃q)188

encloses at least p fraction of the probability mass of f(x + P). We prove the following lemma189

by bounding the cumulative distribution function of the distances of f(zi)s from f̂(x) using the190

Dvoretzky–Kiefer–Wolfowitz inequality.191

Lemma 2. With probability 1− α2,192

P
[
f(X) ∈ B(f̂(x), R̃q)

]
> p

Combining with theorem 3, we have the final certificate:193

∀x′ s.t. ‖x− x′‖2 ≤ ε1, d(f̂(x), f̂(x′)) ≤ (1 + β)R̂,

with probability at least 1 − α, for α = α1 + α2. In our experiments, we set α1 = α2 = 0.005 to194

achieve an overall success probability of 1− α = 0.99, and calculate the required ∆ and q values195

accordingly. We use a β = 2-approximation for computing the minimum enclosing ball in the196

smoothing step. Algorithm 2 provides the pseudocode for the certification procedure.197

5



4 Relaxing Metric Requirements198

Although we defined our procedure for metric outputs, our analysis does not critically use all the199

properties of a metric. For instance, we do not require d(z1, z2) to be strictly greater than zero for200

z1 6= z2. An example of such a distance measure is the total variation distance that returns zero for201

two vectors that differ by a constant amount on each coordinate. Our proofs do implicitly use the202

symmetry property, but asymmetric distances can be converted to symmetric ones by taking the sum203

or the max of the distances in either directions. Perhaps the most important property of metrics that204

we use is the triangle inequality as it is critical for the robustness guarantee of the smoothed function.205

However, even this constraint may be partially relaxed. It is sufficient for the distance function d to206

satisfy the triangle inequality approximately, i.e., d(a, c) ≤ γ(d(a, b) + d(b, c)), for some constant207

γ. The theorems and lemmas can be adjusted to account for this approximation, e.g., the bound208

in theorem 1 will become 2γR. A commonly used distance measure for comparing images and209

documents is the cosine distance defined as the inner-product of two vectors after normalization. This210

distance can be show to be proportional to the squared Euclidean distance between the normalized211

vectors which satisfies the relaxed version of triangle inequality for γ = 2.212

These relaxations extend the scope of center smoothing to many commonly used distance measures213

that need not necessarily satisfy all the metric properties. For instance, perceptual distances measure214

the distance between two images in some feature space rather than image space. Such distances align215

well with human judgements when the features are extracted from a deep neural network [54] and are216

considered more natural measures for image similarity. For two images I1 and I2, let φ(I1) and φ(I2)217

be their feature representations. Then, for a distance function d in the feature space that satisfies the218

relaxed triangle inequality, we can define a distance function dφ(I1, I2) = d(φ(I1), φ(I2)) in the219

image space, which also satisfies the relaxed triangle inequality. For any image I3,220

dφ(I1, I2) = d(φ(I1), φ(I2))

≤ γ (d(φ(I1), φ(I3)) + d(φ(I3), φ(I2)))

= γ (dφ(I1, I3) + dφ(I3, I2)) .

5 Experiments221

We apply center smoothing to certify a wide range of output metrics: Jaccard distance based on222

intersection over union (IoU) of sets, total variation distances for images, and angular distance. We223

certify the bounding box generated by a face detector – a key component of most facial recognition224

systems – by guaranteeing the minimum overlap (measured using IoU) it must have with the output225

under an adversarial perturbation of the input. For instance, if ε1 = 0.2, the Jaccard distance (1-IoU)226

is guaranteed to be bounded by 0.2, which implies that the bounding box of a perturbed image must227

have at least 80% overlap with that of the clean image. We use a pre-trained face detection model for228

this experiment. For total variation and angular distance, we use simple, easy-to-train convolutional229

neural network based dimensionality reduction (autoencoder) and image reconstruction models. Our230

goal is to demonstrate the effectiveness of our method for a wide range of applications and so, we231

place less emphasis on the performance of the underlying models being smoothed. In each case, we232

show that our method is capable of generating certified guarantees without significantly degrading233

the performance of the underlying model. We provide additional experiments for other metrics and234

parameter settings in the appendix.235

As is common in the randomized smoothing literature, we train our base models (except for the236

pre-trained ones) on noisy data with different noise levels σ = 0.1, 0.2, . . . , 0.5 to make them more237

robust to input perturbations. We use n = 104 samples to estimate the smoothed function and238

m = 106 samples to generate certificates, unless stated otherwise. We set ∆ = 0.05, α1 = 0.005239

and α2 = 0.005 as discussed in previous sections. We grow the smoothing noise σ linearly with240

the input perturbation ε1. Specifically, we maintain ε1 = hσ for different values of h = 2, 1, 1.5241

in our experiments. We plot the median certified output radius ε2 and the median smoothing loss,242

defined as the distance between the outputs of the base model and the smoothed model d(f(x), f̂(x)),243

of fifty random test examples for different values of ε1. In all our experiments, we observe that244

both these quantities increase as the input radius ε1 increases, but the smoothing error remains245

significantly below the certified output radius. Also, increasing the value of h improves the quality246

of the certificates (lower ε2). This could be due to the fact that for a higher h, the smoothing noise247
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(a) Certifying Jaccard Distance (1 - IoU). (b) Smoothed Output.

Figure 3: Face Detection on CelebA using MTCNN detector: Part (a) plots the certified output radius
ε2 and the smoothing error for h = 1 and 2. Part (b) compares the smoothed output (blue box) to the
output of the base classifier (green box, mostly hidden behind the blue box) showing a significant
overlap.

σ is lower (keeping ε1 constant), which means that the radius of the minimum enclosing ball in the248

output space is smaller leading to a tighter certificate. We ran all our experiments on a single NVIDIA249

GeForce RTX 2080 Ti in an internal cluster. Each of the fifty examples we certify took somewhere250

between 1-3 minutes depending on the underlying model.251

5.1 Jaccard distance252

It is known that facial recognition systems can be deceived to evade detection, impersonate authorized253

individuals and even render completely ineffective [48, 45, 13]. Most facial recognition systems first254

detect a region that contains a persons face, e.g. a bounding box, and then uses facial features to255

identify the individual in the image. To evade detection, an attacker may seek to degrade the quality of256

the bounding boxes produced by the detector and can even cause it to detect no box at all. Bounding257

boxes are often interpreted as sets and the their quality is measured as the amount of overlap with the258

desired output. When no box is output, we say the overlap is zero. The overlap between two sets is259

defined as the ratio of the size of the intersection between them to the size of their union (IoU). Thus,260

to certify the robustness of the output of a face detector, it makes sense to bound the worst-case IoU261

of the output of an adversarial input to that of a clean input. The corresponding distance function,262

known as Jaccard distance, is defined as 1− IoU which defines a metric over the universe of sets.263

IoU(A,B) =
|A ∩B|
|A ∪B|

, dJ(A,B) = 1− IoU(A,B) = 1− |A ∩B|
|A ∪B|

.

In this experiment, we certify the output of a pre-trained face detection model MTCNN [53] on264

the CelebA face dataset [35]. We set n = 5000 and m = 10000, and use default values for other265

parameters discussed above. Figure 3a plots the certified output radius ε2 and the smoothing error for266

h = ε1/σ = 1 and 2 for ε1 = 0.1, 0.2, . . . , 0.5. Certifying the Jaccard distance allows us to certify267

IoU as well, e.g., for h = 2, ε2 is consistently below 0.2 which means that even the worst bounding268

box under adversarial perturbation of the input has an overlap of at least 80% with the box for the269

clean input. The low smoothing error shows that the performance of the base model does not drop270

significantly as the actual output of the smoothed model has a large overlap with that of the base271

model. Figure 3b compares the outputs of the smoothed model (blue box) and the base model (green272

box). For most of the images, the blue box overlaps with the green one almost perfectly.273

5.2 Total Variation Distance274

The total variation norm of a vector x is defined as the sum of the magnitude of the difference between275

pairs of coordinates defined by a neighborhood set N . For a 1-dimensional array x with k elements,276
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(a) Dimensionality Reduction on MNIST (b) Dimensionality Reduction on CIFAR-10

(c) Image Reconstruction on MNIST (d) Image Reconstruction on CIFAR-10

Figure 4: Certifying Total Variation Distance

one can define the neighborhood as the set of consecutive elements.277

TV (x) =
∑

(i,j)∈N

|xi − xj |, TV1D(x) =

k−1∑
i=1

|xi − xi+1|.

Similarly, for a grayscale image represented by a h×w 2-dimensional array x, the neighborhood can278

be defined as the next element (pixel) in the row/column. In case of an RGB image, the difference279

between the neighboring pixels is a vector, whose magnitude can be computed using an `p-norm. For,280

our experiments we use the `1-norm.281

TVRGB(x) =

h−1∑
i=1

w−1∑
j=1

‖xi,j − xi+1,j‖1 + ‖xi,j − xi,j+1‖1

The total variation distance between two images I1 and I2 can be defined as the total variation282

norm of the difference I1 − I2, i.e., TV D(I1, I2) = TV (I1 − I2). The above distance defines a283

pseudometric over the space of images as it satisfies the symmetry property and the triangle inequality,284

but may violate the identity of indiscernibles as an image obtained by adding the same value to all285

the pixel intensities has a distance of zero from the original image. However, as noted in section 4,286

our certificates hold even for this setting.287

We certify total variation distance for the problems of dimensionality reduction and image recon-288

struction on MNIST [10] and CIFAR-10 [22]. The base-model for dimensionality reduction is an289

autoencoder that uses convolutional layers in its encoder module to map an image down to a small290

number of latent variables. The decoder applies a set of de-convolutional operations to reconstruct291

the same image. We insert batch-norm layers in between these operations to improve performance.292

For image reconstruction, the goal is to recover an image from small number of measurements of the293

original image. We apply a transformation defined by Gaussian matrix A on each image to obtain the294

measurements. The base model tries to reconstruct the original image from the measurements. The295

attacker, in this case, is assumed to add a perturbation in the measurement space instead of the image296

space (as in dimensionality reduction). The model first reverts the measurement vector to a vector297

in the image space by simply applying the pseudo-inverse of A and then passes it through a similar298

autoencoder model as for dimensionality reduction. We present results for ε1 = 0.2, 0.4, . . . , 1.0299

and h = 2, 1.5 and use 256 latent dimensions and measurements for these experiments in figure 4.300

To put these plots in perspective, the maximum TVD between two CIFAR-10 images could be301

6×31×31 = 5766 and between MNIST images could be 2×27×27 = 1458 (pixel values between302

0 and 1).303
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(a) Dimensionality Reduction on MNIST (b) Dimensionality Reduction on CIFAR-10

(c) Image Reconstruction on MNIST (d) Image Reconstruction on CIFAR-10

Figure 5: Certifying Angular Distance

5.3 Angular Distance304

A common measure for similarity of two vectors A and B is the cosine similarity between them,305

defined as below:306

cos(A,B) =
A ·B

‖A‖2‖B‖2
=

∑
iAiBi√∑

j A
2
j

√∑
k B

2
k

.

In order to convert it into a distance, we can compute the angle between the two vectors by taking the307

cosine inverse of the above similarity measure, which is known as angular distance:308

AD(A,B) = cos−1(cos(A,B))/π.

Angular distance always remains between 0 and 1, and similar to the total variation distance, angular309

distance also defines a pseudometric on the output space. We repeat the same experiments with the310

same models and hyper-parameter settings as in the previous subsection for total variation distance311

(figure 5). The results are similar in trend in all the experiments conducted, showing that center312

smoothing can be reliably applied to a vast range of output metrics to obtain similar robustness313

guarantees.314

6 Conclusion315

Randomized smoothing can be extended beyond classification tasks to obtain provably robust models316

for problems where the quality of the output is measured using a distance metric. We design a317

procedure that can make any model of this kind provably robust against norm bounded adversarial318

perturbations of the input. In our experiments, we demonstrate that it can generate meaningful319

certificates under a wide variety of distance metrics without significantly compromising the quality320

of the base model. We also note that the metric requirements on the distance measure can be partially321

relaxed in exchange for weaker certificates.322

In this work, we focus on `2-norm bounded adversaries and the Gaussian smoothing distribution. An323

important direction for future investigation could be whether this method can be generalised beyond324

`p-adversaries to more natural threat models, e.g., adversaries bounded by total variation distance,325

perceptual distance, cosine distance, etc. Center smoothing does not critically rely on the shape of the326

smoothing distribution or the threat model. Thus, improvements in these directions could potentially327

be coupled with our method to broaden the scope of provable robustness in machine learning.328
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