
Under review as a conference paper at ICLR 2021

INFORMATION-THEORETIC PROBING EXPLAINS RE-
LIANCE ON SPURIOUS HEURISTICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Most current NLP systems are based on a pre-train-then-fine-tune paradigm, in
which a large neural network is first trained in a self-supervised way designed to
encourage the network to extract broadly-useful linguistic features, and then fine-
tuned for a specific task of interest. Recent work attempts to understand why this
recipe works and explain when it fails. Currently, such analyses have produced
two sets of apparently-contradictory results. Work that analyzes the representa-
tions that result from pre-training (via “probing classifiers”) finds evidence that
rich features of linguistic structure can be decoded with high accuracy, but work
that analyzes model behavior after fine-tuning (via “challenge sets”) indicates that
decisions are often not based on such structure but rather on spurious heuristics
specific to the training set. In this work, we test the hypothesis that the extent to
which a feature influences a model’s decisions can be predicted using a combina-
tion of two factors: The feature’s extractability after pre-training (measured using
information-theoretic probing techniques), and the evidence available during fine-
tuning (defined as the feature’s co-occurrence rate with the label). In experiments
with both synthetic and natural language data, we find strong evidence (statisti-
cally significant correlations) supporting this hypothesis.

1 INTRODUCTION

Large pre-trained language models (LMs) (Devlin et al., 2018; Raffel et al., 2019; Brown et al.,
2020) have demonstrated impressive empirical success on a range of benchmark NLP tasks. How-
ever, analyses have shown that such models are easily fooled when tested on distributions that differ
from those they were trained on, suggesting they are often “right for the wrong reasons” (McCoy
et al., 2019). Recent research which attempts to understand why such models behave in this way
has primarily made use of two analysis techniques: probing classifiers (Adi et al., 2017; Hupkes
et al., 2018), which measure whether or not a given feature is encoded by a representation, and chal-
lenge sets (Cooper et al., 1996; Linzen et al., 2016b; Rudinger et al., 2018), which measure whether
model behavior in practice is consistent with use of a given feature. The results obtained via these
two techniques currently suggest different conclusions about how well pre-trained representations
encode language. Work based on probing classifiers has consistently found evidence that models
contain rich information about syntactic structure (Hewitt & Manning, 2019; Bau et al., 2019; Ten-
ney et al., 2019a), while work using challenge sets has frequently revealed that models built on top
of these representations do not behave as though they have access to such rich features, rather they
fail in trivial ways (Dasgupta et al., 2018; Glockner et al., 2018a; Naik et al., 2018).

In this work, we attempt to link these two contrasting views of feature representations. We assume
the standard recipe in NLP, in which linguistic representations are first derived from large-scale self-
supervised pre-training intended to encode broadly-useful linguistic features, and then are adapted
for a task of interest via transfer learning, or fine-tuning, on a task-specific dataset. We test the
hypothesis that the extent to which a fine-tuned model uses a given feature can be explained as a
function of two metrics: The extractability of the feature after pre-training (as measured by probing
classifiers) and the evidence available during fine-tuning (defined as the rate of co-occurrence with
the label). We first show results on a synthetic task, and second using state-of-the-art pre-trained
LMs on language data. Our results suggest that probing classifiers can be viewed as a measure of
the pre-trained representation’s inductive biases: The more extractable a feature is after pre-training,
the less statistical evidence is required in order for the model to adopt the feature during fine-tuning.
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Contribution. This work establishes a relationship between two widely-used techniques for ana-
lyzing LMs. Currently, the question of how models’ internal representations (measured by probing
classifiers) influence model behavior (measured by challenge sets) remains open (Belinkov & Glass,
2019; Belinkov et al., 2020). Understanding the connection between these two measurement tech-
niques can enable more principled evaluation of and control over neural NLP models.

2 SETUP AND TERMINOLOGY

2.1 FORMULATION

Our motivation comes from McCoy et al. (2019), which demonstrated that, when fine-tuned on a
natural language inference task (Williams et al., 2018, MNLI), a model based on a state-of-the-art
pre-trained LM (Devlin et al., 2018, BERT) categorically fails on test examples which defy the
expectation of a “lexical overlap heuristic”. For example, the model assumes that the sentence “the
lawyer followed the judge” entails “the judge followed the lawyer” purely because all the words
in the latter appear in the former. While this heuristic is statistically favorable given the model’s
training data, it is not infallible. Specifically, McCoy et al. (2019) report that 90% of the training
examples containing lexical overlap had the label “entailment”, but the remaining 10% did not.
Moreover, the results of recent studies based on probing classifiers suggest that more robust features
are extractable with high reliability from BERT representations. For example, given the example
“the lawyer followed the judge”/“the judge followed the lawyer”, if the model can represent that
“lawyer” is the agent of “follow” in the first sentence, but is the patient in the second, then the model
should conclude that the sentences have different meanings. Such semantic role information can be
recovered at > 90% accuracy from BERT embeddings (Tenney et al., 2019b). Thus, the question is:
Why would a model prefer a weak feature over a stronger one, if both features are extractable from
the model’s representations and justified by the model’s training data?

Abstracting over details, we distill the basic NLP task setting described above into the following, to
be formalized in the Section 2.2. We assume a binary sequence classification task where a target
feature t perfectly predicts the label (e.g., the label is 1 iff t holds). Here, t represents features which
actually determine the label by definition, e.g., whether one sentence semantically entails another.
Additionally, there exists a spurious feature s that frequently co-occurs with t in training but is not
guaranteed to generalize outside of the training set. Here, s (often called a “heuristic” or “bias”
elsewhere in the literature) corresponds to features like lexical overlap, which are predictive of the
label in some datasets but are not guaranteed to generalize.

Assumptions. In this work, we assume there is a single t and a single s; in practice there may
be many s features. Still, our definition of a feature accommodates multiple spurious or target
features. In fact, some of our spurious features already encompass multiple features: the lexical
feature, for example, is a combination of several individual-word features because it holds if one of
a set of words is in the sentence. This type of spurious feature is common in real datasets: E.g.,
the hypothesis-only baseline in NLI is a disjunction of lexical features (with semantically unrelated
words like “no”, “sleep”, etc.) (Poliak et al., 2018b; Gururangan et al., 2018).

We assume that s and t frequently co-occur, but that only s occurs in isolation. This assumption
reflects realistic NLP task settings since datasets always contain some heuristics, e.g., lexical cues,
cultural biases, or artifacts from crowdsourcing (Gururangan et al., 2018). Thus, our experiments
focus on manipulating the occurrence of s alone, but not t alone: This means giving the model
evidence against relying on s. This is in line with prior applied work that attempts to influence
model behavior by increasing the evidence against s during training (Min et al., 2020; Zmigrod
et al., 2019; Elkahky et al., 2018).

2.2 DEFINITIONS

Let X be the set of all sentences and S be the space of all sentence-label pairs (x, y) ∈ X × {0, 1}.
We use D ⊂ S to denote a particular training sample drawn from S. We define two types of binary
features: target (t) and spurious (s). Each is a function from sentences x ∈ X to a binary label
{0, 1} that indicates whether the feature holds.
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Target and spurious features. The target feature t is such that there exists some function f :
{0, 1} → {0, 1} such that ∀(x, y) ∈ S, f(t(x)) = y. In other words, the label can always be
perfectly predicted given the value of t.1 A feature s is spurious if it is not a target feature.

Partitions of S. To facilitate analysis, we partition S in four regions (Figure 1). We define Ss-only
to be the set of examples in which the spurious feature occurs alone (without the target). Similarly,
St-only is the set of examples in which the target occurs without the spurious feature. Sboth and Sneither
are analogous. For compactness, we sometimes drop the S∗ notation (e.g., s-only in place of Ss-only).

t-only both s-only

neither

S
D

(a) (b)

Sboth “ tpx, yq | tpxq “ 1 ^ spxq “ 1u
Sneither “ tpx, yq | tpxq “ 0 ^ spxq “ 0u
St-only “ tpx, yq | tpxq “ 1 ^ spxq “ 0u
Ss-only “ tpx, yq | tpxq “ 0 ^ spxq “ 1u

<latexit sha1_base64="bSiqwQANSN306jL/eI6aFqdfpQw="></latexit>

Figure 1: We partition datasets into four sections, defined by the features (spurious and/or target)
that hold. We sample training datasets D, which provide varying amounts of evidence against the
spurious feature, in the form of s-only examples. In the illustration above, the s-only rate is 2

10 =
0.2, i.e., 20% of examples in D provide evidence that s alone should not be used to predict y.

Evidence from Spurious-Only Examples. We are interested in spurious features which are highly
correlated with the target during training. Given a training sample D and features s and t, we define
the s-only example rate to be a measure of the model’s evidence against the use of s as a predictor
of y. Concretely, s-only rate = |Ds-only|

/
|D|, the proportion of training examples in which s occurs

without t (and y = 0).

Use of Spurious Feature. If a model has falsely learned that the spurious feature s alone is pre-
dictive of the label, it will have a high error rate when classifying examples for which s holds but t
does not. We define the s-only error to be the classifier’s error computed only over examples drawn
from Ss-only. When relevant, t-only error, both error, and neither error are defined analogously.

Extractability of a Feature. We want to compare features in terms of how extractable they are
given a representation. For example, given a sentence embedding, it may be possible to predict
multiple features with high accuracy, e.g., whether the word “dog” occurs, and also whether the
word “dog” occurs as the subject of the verb “run”. However, detecting the former will no doubt be
an easier task than detecting the latter. We use the prequential minimum description length (MDL)
Rissanen (1978)–first used by Voita & Titov (2020) for probing–in order to quantify this intuitive
difference.2 MDL is an information-theoretic metric that measures how accurately a feature can be
decoded and the amount of effort required to decode it. Formally, MDL measures the number of bits
required to communicate the labels given the representations. Conceptually, MDL can be understood
as a measure of the area under the loss curve: If a feature is highly extractable, a model trained to
detect that feature will converge quickly to high accuracy, resulting in a low MDL. Computing MDL
requires repeatedly training a model over a dataset labeled by the feature in question. To compute
MDL(s), we train a classifier (without freezing any parameters) to differentiate Ss-only vs. Sneither,
and similarly compute MDL(t). See Voita & Titov (2020) for additional details on MDL.3

1Without loss of generality, we define t in our datasets s.t. t(x) = y,∀x, y ∈ S. To clarify, we do this to
iron out the case where t outputs the opposite value of y.

2We observe similar overall trends when using an alternative metric based on validation loss (Appendix C).
3Note that our reported MDL is higher in some cases than that given by the uniform code (the number of

sentences that are being encoded). The MDL is computed as a sum of the costs of transmitting successively
longer blocks, using classifiers that are trained on previously transmitted data. The high MDL’s are a result of
overfitting by classifiers that are trained on limited data–and therefore, the classifiers have worse compression
performance than the uniform baseline.
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2.3 HYPOTHESIS

Stated using the above-defined terminology, our hypothesis is that a model’s use of the target feature
is modulated by two factors: The relative extractability of the target feature t (compared to the spu-
rious feature s), and the evidence from s-only examples provided by the training data. In particular,
we expect that higher extractability of t (relative to s), measured by MDL(s)/MDL(t), will yield
models that achieve better performance despite less training evidence.

3 EXPERIMENTS WITH SYNTHETIC DATA

Since it is often difficult to fully decouple the target feature from competing spurious features in
practice, we first use synthetic data in order to test our hypothesis in a clean setting. We use a simple
classifier with an embedding layer, a 1-layer LSTM, and an MLP with 1 hidden layer with tanh
activation. We use a synthetic sentence classification task with k-length sequences of numbers as
input and binary labels as output. We use a symbolic vocabulary V with the integers 0 . . . |V | − 1.
We fix k = 10 and |V | = 50K. We begin with an initial training set of 200K, evenly split between
examples from Sboth and Sneither. Then, varied across runs, we manipulate the evidence against the
spurious feature (i.e., the s-only rate) by replacing a percentage p of the initial data with examples
from Ss-only for p ∈ {0%, 0.1%, 1%, 5%, 10%, 20%, 50%}. Test and validation sets consist of 1,000
examples each from Sboth, Sneither, St-only, Ss-only. In all experiments, we set the spurious feature s to
be the presence of the symbol 2. We consider several different target features t (Table 1), intended to
vary in their extractability. Table 1 contains MDL metrics for each feature (computed on training sets
of 200K, averaged over 3 random seeds). We see a gradation of feature extractability, as desired.4

Target Feature Description MDL(s) MDL(t) Rel. MDL Example

contains-1 1 occurs in sequence 0.36 0.29 1.259 2 4 11 1 4
prefix-dupl Sequence begins with duplicate 0.42 175.74 0.002 5 5 11 12 2
adj-dupl Adjacent duplicate in seq. 0.37 242.20 0.001 11 12 3 3 2
first-last First number equals last number 0.37 397.64 0.001 7 2 11 12 7

Table 1: Instantiations of the target feature t in our synthetic experiments. The spurious feature s
is always the presence of the symbol 2. Features are intended to differ in how hard they are for an
LSTM to detect given sequential input (measured by MDL per §2.2, reported in k-bits).

Figure 2 shows model performance as a function of s-only rate for each of the four features described
above. Here, performance is reported using error rate (lower is better) on each partition (Ss-only,
St-only, Sboth, Sneither) separately. We are primarily interested in whether the relative extractability
of the target feature (compared to the spurious feature) predicts model performance. We indeed see
a fairly clear relationship between the relative extractability ( MDL(s)

MDL(t) ) and the performance of the
model, at every level of training evidence (s-only rate). For example, when t is no less extractable
than s (i.e., contains-1), the model achieves zero error at an s-only rate of 0.001, meaning it
learns that t alone predicts the label despite having only a handful of examples that support this
inference. In contrast, when t is harder to extract than s (e.g., first-last), the model fails to
make this inference, even when a large portion of training examples provide evidence supporting it.

4 EXPERIMENTS ON NATURAL LANGUAGE

We now investigate whether the same trend holds for widely-used language models fine-tuned on
natural language data. To do this, we fine-tune models for the linguistic acceptability task, a simple
sequence classification task as defined in Warstadt & Bowman (2019), in which the goal is to dif-
ferentiate grammatical sentences from ungrammatical ones. We focus on acceptability judgments
since there exists substantial formal linguistic theory that can inform how we define the target fea-
tures, as well as recent work in computational linguistics showing that neural language models can
be sensitive to spurious features in this task (Warstadt et al., 2020a; Marvin & Linzen, 2018).

4Note, all models are ultimately able to learn to detect t (achieve high test accuracy) on the both partition,
but not on the t-only partition.

4



Under review as a conference paper at ICLR 2021

0

0.
00

1

0.
01

0.
05 0.
1

0.
2

0.
5

Evidence from
 Spurious-only Examples
 (s-only example rate)

0.00

0.25

0.50

0.75

1.00

Spurious
 (s-only) Error

0

0.
00

1

0.
01

0.
05 0.
1

0.
2

0.
5

Evidence from
 Spurious-only Examples
 (s-only example rate)

Target
 (t-only) Error

Rel. Extractibility
0.001 first-last 0.001 adj-dupl 0.002 prefix-dupl 1.295 contains-1

0

0.
00

1

0.
01

0.
05 0.
1

0.
2

0.
5

Evidence from
 Spurious-only Examples
 (s-only example rate)

Neither Error

0

0.
00

1

0.
01

0.
05 0.
1

0.
2

0.
5

Evidence from
 Spurious-only Examples
 (s-only example rate)

Both Error

Figure 2: Results on Synthetic Data. Error on each partition of the test set, as a function of s-only
rate. A model that has learned to use the target feature alone to predict the label will achieve zero
error across all partitions. s-only and t-only error reach 0 quickly when t is as easy to extract as s
(i.e., the relative extractability is 1). However, when t is harder to extract than s (rel. extractability
< 1), performance lags until evidence from s-only examples is quite strong.

4.1 DATA

We design a series of simple natural language grammars that generate a variety of feature pairs
(s, t), which we expect will exhibit different levels of relative extractability (MDL(s)

/
MDL(t)).

We focus on three syntactic phenomena (described below). In each case, we consider the target
feature t to be whether a given instance of the phenomenon obeys the expected syntactic rules. We
then introduce several spurious features s which we deliberately correlate with the positive label
during fine-tuning. The Subject-Verb Agreement (SVA) construction requires detecting whether
the verb agrees in number with its subject, e.g., “the girls are playing” is acceptable while “the girls
is playing” is not. In general, recognizing agreement requires some representation of hierarchical
syntax, since subjects may be separated from their verbs by arbitrarily long clauses. We introduce
four spurious features: 1) lexical, in which grammatical sentences begin with specific lexical items
(e.g., “often”); 2) length, in which grammatical sentences are longer; 3) recent-noun, in which verbs
in grammatical sentences agree with the immediately preceding noun (in addition to their subject);
and 4) plural, in which verbs in grammatical sentences are preceded by singular nouns as opposed
to plural ones.

The Negative Polarity Items (NPI) construction requires detecting whether a negative polarity item
(e.g., “any”, “ever”) is grammatical in a given context, e.g., “no girl ever played” is acceptable
while “a girl ever played” is not. In general, NPIs are only licensed in contexts that fall within the
scope of a downward entailing operator (such as negation). We again consider four types of spurious
features: 1) lexical, in which grammatical sentences always include one of a set of lexical items
(“no” and “not”); 2) length (as above); 3) plural, in which each noun in a grammatical sentence is
singular, as opposed to plural; and 4) tense, in which grammatical sentences are in present tense.

Some verbs (e.g. “recognize”) require a direct object. However, in the right syntactic contexts (i.e.,
when in the correct syntactic relation with a wh-word), the object position can be empty, creating
what is known as a “gap”. E.g., “I know what you recognized ” is acceptable while “I know that
you recognized ” is not. The Filler-Gap Dependencies (GAP) construction requires detecting
whether a sentence containing a gap is grammatical. For our GAP tasks, we again consider four
spurious features (lexical, length, plural, and tense), defined similarly to above.

The templates above (and slight variants) result in 20 distinct fine-tuning datasets, over which we
perform our analyses (see Appendix for details). Table 2 shows several examples. For the purposes
of this paper, we are interested only in the relative extractability of t vs. s given the pre-trained
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Target Spurious Example

Subject agrees N before V [both] The piano teachers of the lawyer wound the handyman.

with verb is singular [s-only] *The piano teachers of the lawyer wounds the handyman.

NPI in down. Contains [both] No student who was wrong ever resigned.
-entailing context negation word [s-only] *The student who was not wrong ever resigned.

Correct filler-gap Main verb is [both] I knew what he recognized yesterday.
dependency in past tense [s-only] *I knew what he recognized someone yesterday.

Table 2: Examples of features used to generate fine-tuning sets with target/spurious features of
varying extractability scores. Top examples show a case in which t and s both occur and the sentence
is acceptable, and bottom examples show a case in which s occurs without t and the sentence is
unacceptable. Only s is highlighted since t is often defined over the structure of the sentence (see
text) and thus difficult to localize to a few tokens. Table 8 in the Appendix has neither examples.

representation; we don’t intend to make general claims about the linguistic phenomena per se. Thus,
we do not focus on the details of the features themselves, but rather consider each template as
generating one data point, i.e., an (s, t) pair representing a particular level of relative extractability.

4.2 SETUP

We use three models: T5, BERT, and an LSTM with GloVe embeddings (Devlin et al., 2018; Raffel
et al., 2019; Pennington et al., 2014).5 Both T5 and BERT learn to perform well over the whole test
set, whereas the GloVe model struggles with many of the tasks. We expect that this is because the
contextualized pre-training encodes certain syntactic features which let the models better leverage
small training sets (Warstadt & Bowman, 2020). Again, we begin with an initial training set of 2000
examples, evenly split between both and neither, and then introduce s-only examples at rates of 0%,
0.1%, 1%, 5%, 10%, 20%, and 50%, using three random seeds each. Test and validation sets consist
of 1000 examples each from Sboth, Sneither, Ss-only. In the natural language setting, it is often difficult
to generate t-only examples, and thus we cannot compute extractability of the target feature t by
training a classifier to distinguish St-only from a random subset of Sneither, as we did in Section 3.
Therefore, we estimate MDL by training a classifier to distinguish between examples from Ss-only
and examples from Sboth. Using the simulated data from Section 3, we confirm that both methods
(Ss-only vs. Sboth and St-only vs. Sneither) produce similar estimates of MDL(t) (see Appendix).

4.3 RESULTS

For each of our (s, t) feature pairs, we plot the use of the spurious feature (s-only error) as a function
of the evidence against the spurious feature seen in training (s-only example rate).6 We expect to
see the same trend we observed in our synthetic data, i.e., the more extractable the target feature t is
relative to the spurious feature s, the less evidence the model will require before preferring t over s.
To quantify this trend, we compute correlations between 1) the relative extractability of t compared
to s and 2) the amount of training evidence required for the model to adopt the target feature. For
(2), we define s-rate? to be the lowest s-only example rate at which the fine-tuned model is able
to achieve essentially perfect performance (F-score > 0.99) (see Fig. 3a). Intuitively, s-rate? is the
(observed) minimum amount of evidence from which the model is able to infer that the t alone is
predictive of the label.

Figure 3 shows these correlations and associated scatter plots. We can see that relative extractability
is strongly correlated with s-rate? (Fig. 3b), showing highly significant negative correlation for
both BERT (ρ = −0.82) and T5 (ρ = −0.67). That is, the more extractable t is relative to s, the
less evidence the model requires before preferring t. This relationship holds regardless of whether
relative extractability is computed using a ratio of MDL scores or an absolute difference. We also
see that, in most cases, the relative extractability explains the model’s behavior better than does the

5In pilot studies, we found that standard BOW and CNN-based models were unable solve the tasks.
6See Appendix for both error and neither error; both are stable and low in general.
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s-rate★
Threshold: 0.99

(a) s-rate? is determined at 0.99 test F-score.

Absolute Relative (t to s)
Target Spurious Ratio Difference

T5 0.48 -0.27 -0.67 -0.74
BERT 0.44 -0.71 -0.82 -0.84
RoBERTa 0.14 -0.73 -0.74 -0.73
GPT2 -0.08 -0.45 -0.50 -0.52
GloVe 0.36 -0.49 -0.58 -0.58

(b) Spearman’s ρ: MDL vs. s-rate?
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10 3
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10 1
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= . 67

T5

10 2 10 1 100 101

= . 82

BERT

10 2 10 1 100 101

= . 74

RoBERTa

10 2 10 1 100 101

= . 50

GPT-2

10 2 10 1 100 101

= . 58

GloVe

Relative extractibility of target feature (MDL(s)/MDL(t))

(c) Logistic regression plots between s-rate? and the relative extractability of s, t via (MDL(s)
/

MDL(t)).

Figure 3: Relative Extractability Correlates with Adoption of Target Feature. (a) This chart
illustrates how the s-rate ? is determined: Intuitively, it as the amount of evidence required before a
fine-tuned model adopts the target feature. (b) The table shows Spearman’s ρ between s-rate? and
various measures of extractability over the (s, t) pairs. Bold indicates a significant correlation. Rel-
ative extractability, whether ratio (MDL(s)

/
MDL(t)) or difference (MDL(s) −MDL(t)) explains

learning behavior better than absolute extractability of either feature. (c) The logistic regression
plots between s-rate? and extractability of t relative to s via the ratio (MDL(s)

/
MDL(t)). The

Spearman’s ρ of tbe correlation between the ratio and s-rate ? is also detailed in the top-right corner
of each plot.

extractability of s or t alone. This trend is also apparent, albeit weak, for the GloVe model. BERT,
T5, get > 0.99 accuracy on all feature pairs when testing the target feature in isolation, but the
GloVe model solved the target task in isolation for only 55% (11/20) feature pairs. This partially
explains why the GloVe model results are less clear.

Figure 3c shows that T5 (compared to BERT, GPT2, and RoBERTa) requires more data (a higher
s-rate ?) to perform well. We believe that this may be because we fine-tuned T5 with a linear
classification head, rather than the purely textual input and output that it used in pre-training. We
made this decision (1) because we had trouble training T5 in this purely textual manner, and (2)
using a linear classification head over two classes is consistent with the other model architectures.

Figure 4 shows the performance curves for T5 (with BERT, GPT2, RoBERTA, and GloVe in Ap-
pendix A), i.e., use of the spurious feature (s-only error) as a function of the evidence from s-only
examples seen in training (s-only example rate). Note that each data point is the test performance on
a dataset that varies by the amount of evidence from spurious-only examples along the x-axis (with
each line corresponding to a different s, t feature pair.) For pairs with high MDL ratios (i.e., when
t is actually easier to extract than s), the model learns to solve the task “the right way” even when
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Figure 4: Learning Curves for T5. Curves show use of spurious feature (s-only accuracy) as a
function of training evidence (s-only rate). Each line represents one (t, s) pair (described in §4.1).
Pairs vary in the relative extractability of t vs. s (measured by the ratio MDL(s)/MDL(t) and
summarized in the bar chart). When t is much harder to extract relative to s (lower ratios), the
classifier requires much more statistical evidence during training (higher s-only rate) in order to
achieve low error. We find similar patterns for BERT, GPT2 and RoBERTa; see Appendix A. GloVe
has difficulty learning the features, and the relationship is less clear.

the training data provides no incentive to do so. That is, in such cases, the models’ decisions do not
appear to depend on the spurious feature s even in cases when s and the target feature t perfectly
co-occur in the fine-tuning data.

5 DISCUSSION

Our experimental results provide support for our hypothesis: the relative extractability of fea-
tures given an input representation (as measured by information-theoretic probing techniques)
is predictive of the decisions a trained model will make in practice. In particular, we see evi-
dence that models will tend to use imperfect features that are more readily extractable over perfectly
predictive features that are harder to extract. This insight is highly related to prior work which has
shown, e.g., that neural networks learn “easy” examples before they learn “hard” examples (Man-
galam & Prabhu, 2019). Our findings additionally connect to new probing techniques which have
received significant attention in NLP but have yet to be connected to explanations of or predictions
about SOTA models’ decisions in practice.

Fine-tuning may not uncover new features. The models are capable of learning both the s and t
features in isolation, so our experiments show that if the relative extractibility is highly skewed, one
feature may hide the other – a fine-tuned model may not use the harder-to-extract feature. Thus, if
one classifier does not pick up on a feature readily enough, another classifier (or, rather, the same
classifier trained with different data) may not be sensitive to that feature at all. This has ramifications
for how we view fine-tuning, which is generally considered to be beneficial because it allows models
to learn new, task-relevant features. Our findings suggest that if the needed feature is not already
extractable-enough after pretraining, fine-tuning may not have the desired effect.

Probing classifiers can be viewed as measures of a pre-trained representation’s inductive bi-
ases. Thus far, analysis using probing classifiers has primarily focused on whether important lin-
guistic features can be decoded from representations at better-than-baseline levels, but there has been
little insight about what it would mean for a representations’ encoding of a feature to be “sufficient”.
Based on these experiments, we argue that a feature is “sufficiently” encoded if it is as available to
the model as are surface features of the text. For example, if a fine-tuned model can access features
about a word’s semantic role as easily as it can access features about that word’s lexical identity, the
model may need little (or no explicit) training signal in order to prefer a decision rule based on the
former structural feature. The desire for models with such behavior motivates the development of
architectures with explicit inductive biases (e.g., TreeRNNs). Evidence that similar generalization
behavior can result from pre-trained representations has exciting implications for those interested in
sample efficiency and cognitively-plausible language learning (Warstadt & Bowman, 2020; Linzen,
2020). We note that this work has not established that the relationship between extractability and
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feature use is causal. This could be explored, for example, using intermediate task training (Pruk-
sachatkun et al., 2020) in order to influence the extractability of features prior to fine-tuning for the
target task. Recent work suggests, e.g., that fine-tuning on parsing might improve the extractability
of syntactic features (Merchant et al., 2020).

6 RELATED WORK

Significant prior work analyzes the representations and behavior of pre-trained LMs. Work using
probing classifiers (Veldhoen et al., 2016; Adi et al., 2017; Conneau et al., 2018; Hupkes et al., 2018)
has suggested that such models capture a wide range of relevant linguistic phenomena (Hewitt &
Manning, 2019; Bau et al., 2019; Dalvi et al., 2019; Tenney et al., 2019a;b). Other techniques
in this vein include attention maps/visualizations (Voita et al., 2019; Serrano & Smith, 2019), and
relational similarity analyses (Chrupała & Alishahi, 2019). A parallel line of work uses challenge
sets to understand model behavior in practice. Some works construct evaluation sets to analyze
weaknesses in the decision procedures of neural NLP models (Jia & Liang, 2017b; Glockner et al.,
2018b; Dasgupta et al., 2018; Gururangan et al., 2018; Poliak et al., 2018b; Elkahky et al., 2018;
Ettinger et al., 2016; Linzen et al., 2016b; Isabelle et al., 2017; Naik et al., 2018; Jia & Liang,
2017a; Linzen et al., 2016a; Goldberg, 2019, and others). Others use such datasets to improve
models’ handling of linguistic features (Min et al., 2020; Poliak et al., 2018a; Liu et al., 2019), or
to mitigate biases (Zmigrod et al., 2019; Zhao et al., 2018; 2019; Hall Maudslay et al., 2019; Lu
et al., 2018). Nie et al. (2020) and Kaushik et al. (2020) explore augmenting training sets with a
human-in-the-loop methods.

Our work is related to work on generalization of neural NLP models. Geiger et al. (2019) dis-
cusses ways in which evaluation tasks should be sensitive to models’ inductive biases and Warstadt
& Bowman (2020) discusses the ability of language model pre-training to encode such inductive
biases. Work on data augmentation (Elkahky et al., 2018; Min et al., 2020; Zmigrod et al., 2019) is
relevant, as the approach relies on the assumption that altering the training data distribution (analo-
gous to what we call s-only rate in our work) will improve model behavior in practice. Kodner &
Gupta (2020); Jha et al. (2020) discuss concerns about ways in which such approaches can be coun-
terproductive, by introducing new artifacts. Work on adversarial robustness (Ribeiro et al., 2018;
Iyyer et al., 2018; Hsieh et al., 2019; Jia et al., 2019; Alzantot et al., 2018; Hsieh et al., 2019; Ilyas
et al., 2019; Madry et al., 2017; Athalye et al., 2018) is also relevant, as it relates to the influence of
dataset artifacts on models’ decisions. A still larger body of work studies feature representation and
generalization in neural networks outside of NLP. Mangalam & Prabhu (2019) show that neural net-
works learn “easy” examples (as defined by shallow machine learning model performance) before
they learn “hard” examples. Zhang et al. (2016) and Arpit et al. (2017) show that neural networks
which are capable of memorizing noise nonetheless acheive good generalization performance, sug-
gesting that such models might have an inherent preference to learn more general features. Finally,
ongoing theoretical work characterizes the ability of over-parameterized networks to generalize in
terms of complexity (Neyshabur et al., 2019) and implicit regularization (Blanc et al., 2019).

Concurrent work (Warstadt et al., 2020b) also investigates the inductive biases of large pre-trained
models (RoBERTa), and when theses models shift from a surface feature (what we call spurious
features) to a linguistic feature (what we call a target feature). In our work, we focus on how to
predict which of these two biases characterize the model (via relative MDL).

7 CONCLUSION

This work bears on an open question in NLP, namely, the question of how models’ internal repre-
sentations (as measured by probing classifiers) influence model behavior (as measured by challenge
sets). We find that the feature extractability can be viewed as an inductive bias: the more extractable
a feature is after pre-training, the less statistical evidence is required in order for the model to adopt
the feature during fine-tuning. Understanding the connection between these two measurement tech-
niques can enable more principled evaluation of and control over neural NLP models.
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