Machine Learning Testing: Survey, Landscapes and HorizonsDownload PDFOpen Website

2022 (modified: 13 Jun 2022)IEEE Trans. Software Eng. 2022Readers: Everyone
Abstract: This paper provides a comprehensive survey of techniques for testing machine learning systems; Machine Learning Testing (ML testing) research. It covers 144 papers on testing properties (e.g., correctness, robustness, and fairness), testing components (e.g., the data, learning program, and framework), testing workflow (e.g., test generation and test evaluation), and application scenarios (e.g., autonomous driving, machine translation). The paper also analyses trends concerning datasets, research trends, and research focus, concluding with research challenges and promising research directions in ML testing.
0 Replies

Loading