A Discriminative Gaussian Mixture Model with SparsityDownload PDF

Sep 28, 2020 (edited Mar 18, 2021)ICLR 2021 PosterReaders: Everyone
  • Keywords: classification, sparse Bayesian learning, Gaussian mixture model
  • Abstract: In probabilistic classification, a discriminative model based on the softmax function has a potential limitation in that it assumes unimodality for each class in the feature space. The mixture model can address this issue, although it leads to an increase in the number of parameters. We propose a sparse classifier based on a discriminative GMM, referred to as a sparse discriminative Gaussian mixture (SDGM). In the SDGM, a GMM-based discriminative model is trained via sparse Bayesian learning. Using this sparse learning framework, we can simultaneously remove redundant Gaussian components and reduce the number of parameters used in the remaining components during learning; this learning method reduces the model complexity, thereby improving the generalization capability. Furthermore, the SDGM can be embedded into neural networks (NNs), such as convolutional NNs, and can be trained in an end-to-end manner. Experimental results demonstrated that the proposed method outperformed the existing softmax-based discriminative models.
  • One-sentence Summary: A sparse classifier based on a discriminative Gaussian mixture model, which can also be embedded into a neural network.
  • Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
  • Supplementary Material: zip
19 Replies

Loading