An $n$-Dimensional Chaotic System Generation Method Using Parametric Pascal MatrixDownload PDFOpen Website

2022 (modified: 10 Nov 2022)IEEE Trans. Ind. Informatics 2022Readers: Everyone
Abstract: When high-dimensional chaotic systems are applied to many practical applications, they are required to have robust and complex hyperchaotic behaviors. In this article, we propose a novel <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$n$</tex-math></inline-formula> D chaotic system construction method using the Pascal-matrix theory. First, a parametric Pascal matrix is constructed. Then, an <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$n$</tex-math></inline-formula> D chaotic system can be generated by using the parametric Pascal matrix as the parameter matrix of the system. Theoretical analysis shows that the generated <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$n$</tex-math></inline-formula> D chaotic systems have robust and complex chaotic behaviors, and they become <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$n$</tex-math></inline-formula> D Arnold Cat maps by fixing the parameters as some special values. Performance evaluations demonstrate that the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$n$</tex-math></inline-formula> D chaotic systems have more complex chaotic behaviors and better distribution of outputs compared with existing HD chaotic systems. A 4-D Arnold Cat map and a 4-D chaotic map with hyperchaotic behaviors are generated as two examples. The two chaotic maps are then simulated on a microcontroller-based hardware platform and the chaotic sequences are tested to show good randomness.
0 Replies

Loading