Abstract: A key element in computational discourse analysis is the design of a formal representation for the discourse structure of a text. With machine learning being the dominant method, it is important to identify a discourse representation that can be used to perform large-scale annotation. This survey provides a systematic analysis of existing discourse representation theories to evaluate whether they are suitable for annotation of Chinese text. Specifically, the two properties, expressiveness and practicality, are introduced to compare the representations of theories based on rhetorical relations and the representations of theories based on entity relations. The comparison systematically reveals linguistic and computational characteristics of the theories. After that, we conclude that none of the existing theories are quite suitable for scalable Chinese discourse annotation because they are not both expressive and practical. Therefore, a new discourse representation needs to be proposed, which should balance the expressiveness and practicality, and cover rhetorical relations and entity relations. Inspired by the conclusions, this survey discusses some preliminary proposals on how to represent the discourse structure that are worth pursuing.
0 Replies
Loading