Abstract: Author Summary A central goal in systems neuroscience is to understand how large populations of neurons work together to enable us to sense, to reason, and to act. To go beyond single-neuron and pairwise analyses, recent studies have applied dimensionality reduction methods to neural population activity to reveal tantalizing evidence of neural mechanisms underlying a wide range of brain functions. To aid in interpreting the outputs of dimensionality reduction, it is important to vary the inputs to a brain area and ask whether the outputs of dimensionality reduction change in a sensible manner, which has not yet been shown. In this study, we recorded the activity of tens of neurons in the primary visual cortex (V1) of macaque monkeys while presenting different visual stimuli. We found that the dimensionality of the population activity grows with stimulus complexity, and that the population responses to different stimuli occupy similar dimensions of the population firing rate space, in accordance with the visual stimuli themselves. For comparison, we applied the same analysis methods to the activity of a recently-proposed V1 receptive field model and a deep convolutional neural network. Overall, we found dimensionality reduction to yield interpretable results, providing encouragement for the use of dimensionality reduction in other brain areas.
0 Replies
Loading