Tackling Imbalanced Class in Federated Learning via Class Distribution EstimationDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Federated Learning, class imbalance, class distribution estimation
Abstract: Federated Learning (FL) has become an upsurging machine learning method due to its applicability in large-scale distributed system and its privacy-preserving property. However, in real-world applications, the presence of class imbalance issue, especially the mismatch between local and global class distribution, greatly degrades the performance of FL. Moreover, due to the privacy constrain, the class distribution information of clients can not be accessed directly. To tackle class imbalance issue under FL setting, a novel algorithm, FedRE, is proposed in this paper. We propose a new class distribution estimation method for the FedRE algorithm, which requires no extra client data information and thus has no privacy concern. Both experimental results and theoretical analysis are provided to support the validity of our distribution estimation method. The proposed algorithm is verified with several experiment, including different datasets with the presence of class imbalance and local-global distribution mismatch. The experimental results show that FedRE is effective and it outperforms other related methods in terms of both overall and minority class classification accuracy.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
Supplementary Material: zip
4 Replies

Loading