A Gradient Method for Multilevel OptimizationDownload PDF

May 21, 2021 (edited Jan 14, 2022)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: multilvel optimization, hyperparameter optimization, gradient method
  • TL;DR: A gradient method for multilevel optimization with theoretical guarantee is proposed.
  • Abstract: Although application examples of multilevel optimization have already been discussed since the 1990s, the development of solution methods was almost limited to bilevel cases due to the difficulty of the problem. In recent years, in machine learning, Franceschi et al. have proposed a method for solving bilevel optimization problems by replacing their lower-level problems with the $T$ steepest descent update equations with some prechosen iteration number $T$. In this paper, we have developed a gradient-based algorithm for multilevel optimization with $n$ levels based on their idea and proved that our reformulation asymptotically converges to the original multilevel problem. As far as we know, this is one of the first algorithms with some theoretical guarantee for multilevel optimization. Numerical experiments show that a trilevel hyperparameter learning model considering data poisoning produces more stable prediction results than an existing bilevel hyperparameter learning model in noisy data settings.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
  • Code: zip
16 Replies