Towards Lightweight, Model-Agnostic and Diversity-Aware Active Anomaly DetectionDownload PDF

Published: 01 Feb 2023, Last Modified: 17 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: Active Anomaly Discovery, Diversity Sampling, Deep Learning
Abstract: Active Anomaly Discovery (AAD) is flourishing in the anomaly detection research area, which aims to incorporate analysts’ feedback into unsupervised anomaly detectors. However, existing AAD approaches usually prioritize the samples with the highest anomaly scores for user labeling, which hinders the exploration of anomalies that were initially ranked lower. Besides, most existing AAD approaches are specially tailored for a certain unsupervised detector, making it difficult to extend to other detection models. To tackle these problems, we propose a lightweight, model-agnostic and diversity-aware AAD method, named LMADA. In LMADA, we design a diversity-aware sample selector powered by Determinantal Point Process (DPP). It considers the diversity of samples in addition to their anomaly scores for feedback querying. Furthermore, we propose a model-agnostic tuner. It approximates diverse unsupervised detectors with a unified proxy model, based on which the feedback information is incorporated by a lightweight non-linear representation adjuster. Through extensive experiments on 8 public datasets, LMADA achieved 74% F1-Score improvement on average, outperforming other comparative AAD approaches. Besides, LMADA can also achieve significant performance boosting under any unsupervised detectors.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
17 Replies