Keywords: Machine Learning, Deep Learning, Fairness, Adversarial Learning, Fair Representation Learning
Abstract: As more decisions in our daily life become automated, the need to have machine learning algorithms that make fair decisions increases. In fair representation learning we are tasked with finding a suitable representation of the data in which a sensitive variable is censored. Recent work aims to learn fair representations through adversarial learning. This paper builds upon this work by introducing a novel algorithm which uses dampening and stacking to learn adversarial fair representations. Results show that that our algorithm improves upon earlier work in both censoring and reconstruction.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
Supplementary Material: zip
4 Replies
Loading