MoPro: Webly Supervised Learning with Momentum PrototypesDownload PDF

28 Sep 2020 (modified: 09 Feb 2021)ICLR 2021 PosterReaders: Everyone
  • Keywords: webly-supervised learning, weakly-supervised learning, contrastive learning, representation learning
  • Abstract: We propose a webly-supervised representation learning method that does not suffer from the annotation unscalability of supervised learning, nor the computation unscalability of self-supervised learning. Most existing works on webly-supervised representation learning adopt a vanilla supervised learning method without accounting for the prevalent noise in the training data, whereas most prior methods in learning with label noise are less effective for real-world large-scale noisy data. We propose momentum prototypes (MoPro), a simple contrastive learning method that achieves online label noise correction, out-of-distribution sample removal, and representation learning. MoPro achieves state-of-the-art performance on WebVision, a weakly-labeled noisy dataset. MoPro also shows superior performance when the pretrained model is transferred to down-stream image classification and detection tasks. It outperforms the ImageNet supervised pretrained model by +10.5 on 1-shot classification on VOC, and outperforms the best self-supervised pretrained model by +17.3 when finetuned on 1% of ImageNet labeled samples. Furthermore, MoPro is more robust to distribution shifts. Code and pretrained models are available at
  • One-sentence Summary: MoPro is a new webly-supervised learning framework which advances representation learning using freely-available Web images.
  • Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
  • Supplementary Material: zip
9 Replies