A Topology-aware Graph Coarsening Framework for Continual Graph Learning

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Continual Graph Learning, Catastrophic Forgetting, Graph Coarsening
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Continual learning on graphs tackles the problem of training a graph neural network (GNN) where graph data arrive in a streaming fashion and the model tends to forget knowledge from previous tasks when updating with new data. Traditional continual learning strategies such as Experience Replay can be adapted to streaming graphs, however, these methods often face challenges such as inefficiency in preserving graph topology and incapability of capturing the correlation between old and new tasks. To address these challenges, we propose TA$\mathbb{CO}$, a topology-aware graph coarsening and continual learning framework that stores information from previous tasks as a reduced graph. At each time period, this reduced graph expands by combining with a new graph and aligning shared nodes, and then it undergoes a ``zoom out'' process by reduction to maintain a stable size. We design a graph coarsening algorithm based on node representation proximities to efficiently reduce a graph and preserve topological information. We empirically demonstrate the learning process on the reduced graph can approximate that of the original graph. Our experiments validate the effectiveness of the proposed framework on three real-world datasets using different backbone GNN models.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8017
Loading