Keywords: Large language model, Self-speculative decoding, Multi-token prediction, Low-rank approximation
TL;DR: New model for multi-token prediction in transformers based on canonical probability decomposition that improves the sampling efficiency in the self-speculative decoding paradigm without compromising accuracy.
Abstract: We propose a new model for multi-token prediction in transformers, aiming to enhance sampling efficiency without compromising accuracy. Motivated by recent work that predicts the probabilities of subsequent tokens using multiple heads, we connect this approach to rank-1 canonical tensor decomposition. By generalizing it to a rank-r canonical probability decomposition, we develop an improved model that predicts multiple tokens simultaneously. This model can also be interpreted as a mixture of experts, allowing us to leverage successful techniques from that domain for efficient and robust training. Importantly, the overall overhead for training and sampling remains low. Our method demonstrates significant improvements in inference speed for both text and code generation tasks, proving particularly beneficial within the self-speculative decoding paradigm. It maintains its effectiveness across various model sizes and training epochs, highlighting its robustness and scalability.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13738
Loading