A Geometric Approach to Personalized Recommendation with Set-Theoretic Constraints Using Box Embeddings

23 Sept 2024 (modified: 27 Jan 2025)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Box Embeddings, Personalized Query, Set-based embeddings, Recommendation
TL;DR: Set-theoretic embeddings offer the appropriate inductive bias needed to effectively answer queries with set constraints.
Abstract:

Personalized item recommendation typically suffers from data sparsity, which is most often addressed by learning vector representations of users and items via low-rank matrix factorization. While this effectively densifies the matrix by assuming users and movies can be represented by linearly dependent latent features, it does not capture more complicated interactions. For example, vector representations struggle with set-theoretic relationships, such as negation and intersection, e.g. recommending a movie that is “comedy and action, but not romance”. In this work, we formulate the problem of personalized item recommendation as matrix completion where rows are set-theoretically dependent. To capture this set-theoretic dependence we represent each user and attribute by a hyperrectangle or box (i.e. a Cartesian product of intervals). Box embeddings can intuitively be understood as trainable Venn diagrams, and thus not only inherently represent similarity (via the Jaccard index), but also naturally and faithfully support arbitrary set-theoretic relationships. Queries involving set-theoretic constraints can be efficiently computed directly on the embedding space by performing geometric operations on the representations. We empirically demonstrate the superiority of box embeddings over vector-based neural methods on both simple and complex item recommendation queries by up to 30% overall.

Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3281
Loading