Capacity and Bias of Learned Geometric Embeddings for Directed GraphsDownload PDF

21 May 2021, 20:52 (edited 23 Jan 2022)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: graph embeddings, representation learning, knowledge graphs, structured prediction
  • TL;DR: We introduce a novel geometric embedding method for capturing graph structure, prove it's ability to represent any DAG, and empirically analyze the representational capacity and bias of a large set of geometric embeddings for graph modeling.
  • Abstract: A wide variety of machine learning tasks such as knowledge base completion, ontology alignment, and multi-label classification can benefit from incorporating into learning differentiable representations of graphs or taxonomies. While vectors in Euclidean space can theoretically represent any graph, much recent work shows that alternatives such as complex, hyperbolic, order, or box embeddings have geometric properties better suited to modeling real-world graphs. Experimentally these gains are seen only in lower dimensions, however, with performance benefits diminishing in higher dimensions. In this work, we introduce a novel variant of box embeddings that uses a learned smoothing parameter to achieve better representational capacity than vector models in low dimensions, while also avoiding performance saturation common to other geometric models in high dimensions. Further, we present theoretical results that prove box embeddings can represent any DAG. We perform rigorous empirical evaluations of vector, hyperbolic, and region-based geometric representations on several families of synthetic and real-world directed graphs. Analysis of these results exposes correlations between different families of graphs, graph characteristics, model size, and embedding geometry, providing useful insights into the inductive biases of various differentiable graph representations.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
  • Code: https://github.com/iesl/geometric_graph_embedding
19 Replies

Loading