Proteome-wide prediction of mode of inheritance and molecular mechanism underlying genetic diseases using structural interactomics
Keywords: Mode of inheritance, Functional effect, Genetic diseases mechanism, Graph neural networks, Graph-of-graphs, Structural interactomics
TL;DR: We used a graph-of-graphs approach to combine protein-protein interaction network with protein structures. Then we used graph neural networks to predict mode-of-inheritance and functional effects.
Abstract: Genetic diseases can be classified according to their modes of inheritance and their underlying molecular mechanisms. Autosomal dominant disorders often result from DNA variants that cause loss-of-function, gain-of-function, or dominant-negative effects, while autosomal recessive diseases are primarily linked to loss-of-function variants. In this study, we introduce a graph-of-graphs approach that leverages protein-protein interaction networks and high-resolution protein structures to predict the mode of inheritance of diseases caused by variants in autosomal genes, and to classify dominant-associated proteins based on their functional effect. Our approach integrates graph neural networks, structural interactomics and topological network features to provide proteome-wide predictions, thus offering a scalable method for understanding genetic disease mechanisms.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3556
Loading