CompoDiff: Versatile Composed Image Retrieval With Latent Diffusion

19 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: representation learning for computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Composed Image Retrieval, Diffusion Models
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a diffusion model-based composed image retrieval model that allows the versatility and the controllability of the model. We also propose a massive synthetic CIR triplet dataset named SynthTriplets18M
Abstract: This paper proposes a novel diffusion-based model, CompoDiff, for solving Composed Image Retrieval (CIR) with latent diffusion and presents a newly created dataset, named SynthTriplets18M, of 18 million reference images, conditions, and corresponding target image triplets to train the model. CompoDiff and SynthTriplets18M tackle the shortages of the previous CIR approaches, such as poor generalizability due to the small dataset scale and the limited types of conditions. CompoDiff not only achieves a new zero-shot state-of-the-art on four CIR benchmarks, including FashionIQ, CIRR, CIRCO, and GeneCIS, but also enables a more versatile and controllable CIR by accepting various conditions, such as negative text and image mask conditions, and the controllability to the importance between multiple queries or the trade-off between inference speed and the performance which are unavailable with existing CIR methods. The code and dataset samples are available at Supplementary Materials.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1626
Loading