Keywords: evaluating copying, copyright, generative ai, text-to-image, ai art, law, interpretability, social impact
TL;DR: Rethinking how we define artistic style and characterize style infringement, with an efficient and interpretable quantitative framework based in legal scholarship
Abstract: The advent of text-to-image generative models has led artists to worry that their individual styles may be copied, creating a pressing need to reconsider the lack of protection for artistic styles under copyright law. This requires answering challenging questions, like what defines style and what constitutes style infringment. In this work, we build on prior legal scholarship to develop an automatic and interpretable framework to \emph{quantitatively} assess style infringement. Our methods hinge on a simple logical argument: if an artist's works can consistently be recognized as their own, then they have a unique style. Based on this argument, we introduce ArtSavant, a practical (i.e., efficient and easy to understand) tool to (i) determine the unique style of an artist by comparing it to a reference corpus of works from hundreds of artists, and (ii) recognize if the identified style reappears in generated images. We then apply ArtSavant in an empirical study to quantify the prevalence of artistic style copying across 3 popular text-to-image generative models, finding that under simple prompting, $20\\%$ of $372$ prolific artists studied appear to have their styles be at risk of copying by today's generative models. Our findings show that prior legal arguments can be operationalized in quantitative ways, towards more nuanced examination of the issue of artistic style infringements.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8993
Loading