LoRAPrune: Structured Pruning Meets Low-Rank Parameter-Efficient Fine-TuningDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: Large Language Models (LLMs), such as LLaMA and T5, have shown exceptional performance across various tasks through fine-tuning. Although low-rank adaption (LoRA) has emerged to cheaply fine-tune these LLMs on downstream tasks, their deployment is still hindered by the vast model scale and computational costs. Post-training model pruning offers a way to compress LLMs. However, the current pruning methods designed for LLMs are not compatible with LoRA. This is due to their utilization of unstructured pruning on LLMs, impeding the merging of LoRA weights, or their dependence on the gradients of pre-trained weights to guide pruning, which can impose significant memory overhead. To this end, we propose LoRAPrune, a new framework that delivers an accurate structured pruned model in a highly memory-efficient manner. Specifically, we first design a LoRA-guided pruning criterion, which uses the weights and gradients of LoRA, rather than the gradients of pre-trained weights for importance estimation. We subsequently integrate this criterion into an iterative pruning process, effectively removing redundant channels and heads. Extensive experimental results demonstrate the superior performance of our LoRAPrune over existing approaches on the LLaMA series models. At a 50% compression rate, LoRAPrune demonstrates superior performance over LLM-Pruner, achieving a reduction in perplexity by 4.81 on WikiText2 and 3.46 on PTB, while also decreasing memory usage by 52.6%. Besides, LoRAPrune also matches semi-structural pruning across multiple LLMs, proving its wide applicability.
Paper Type: long
Research Area: Efficient/Low-Resource Methods for NLP
Contribution Types: NLP engineering experiment, Reproduction study, Approaches to low-resource settings, Approaches low compute settings-efficiency, Publicly available software and/or pre-trained models
Languages Studied: English
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview