ARMP: Autoregressive Motion Planning for Quadruped Locomotion and Navigation in Complex Indoor EnvironmentsDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 12 May 2023CoRR 2023Readers: Everyone
Abstract: Generating natural and physically feasible motions for legged robots has been a challenging problem due to its complex dynamics. In this work, we introduce a novel learning-based framework of autoregressive motion planner (ARMP) for quadruped locomotion and navigation. Our method can generate motion plans with an arbitrary length in an autoregressive fashion, unlike most offline trajectory optimization algorithms for a fixed trajectory length. To this end, we first construct the motion library by solving a dense set of trajectory optimization problems for diverse scenarios and parameter settings. Then we learn the motion manifold from the dataset in a supervised learning fashion. We show that the proposed ARMP can generate physically plausible motions for various tasks and situations. We also showcase that our method can be successfully integrated with the recent robot navigation frameworks as a low-level controller and unleash the full capability of legged robots for complex indoor navigation.
0 Replies

Loading