Team-Imitate-Synchronize for Solving Dec-POMDPsDownload PDF

02 Dec 2023OpenReview Archive Direct UploadReaders: Everyone
Abstract: Multi-agent collaboration under partial observability is a difficult task. Multi-agent reinforcement learning (MARL) algorithms that do not leverage a model of the environment struggle with tasks that require sequences of collaborative actions, while Dec-POMDP algorithms that use such models to compute near-optimal policies, scale poorly. In this paper, we suggest the Team-Imitate-Synchronize (TIS) approach, a heuristic, model-based method for solving such problems. Our approach begins by solving the joint team problem, assuming that observations are shared. Then, for each agent we solve a single agent problem designed to imitate its behavior within the team plan. Finally, we adjust the single agent policies for better synchronization. Our experiments demonstrate that our method provides comparable solutions to Dec-POMDP solvers over small problems, while scaling to much larger problems, and provides collaborative plans that MARL algorithms are unable to identify.
0 Replies

Loading