Abstract: We propose PRISM to enable users of machine translation systems to preserve the privacy of data on their own initiative. There is a growing demand to apply machine translation systems to data that require privacy protection. While several machine translation engines claim to prioritize privacy, the extent and specifics of such protection are largely ambiguous. First, there is often a lack of clarity on how and to what degree the data is protected. Even if service providers believe they have sufficient safeguards in place, sophisticated adversaries might still extract sensitive information. Second, vulnerabilities may exist outside of these protective measures, such as within communication channels, potentially leading to data leakage. As a result, users are hesitant to utilize machine translation engines for data demanding high levels of privacy protection, thereby missing out on their benefits. PRISM resolves this problem. Instead of relying on the translation service to keep data safe, PRISM provides the means to protect data on the user's side. This approach ensures that even machine translation engines with inadequate privacy measures can be used securely. For platforms already equipped with privacy safeguards, PRISM acts as an additional protection layer, reinforcing their security furthermore. PRISM adds these privacy features without significantly compromising translation accuracy. Our experiments demonstrate the effectiveness of PRISM using real-world translators, T5 and ChatGPT (GPT-3.5-turbo), and the datasets with two languages. PRISM effectively balances privacy protection with translation accuracy over other user-side privacy protection protocols and helps users grasp the content written in a foreign language without leaking the original content.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Nihar_B_Shah1
Submission Number: 1913
Loading