CO-MOT: Boosting End-to-end Transformer-based Multi-Object Tracking via Coopetition Label Assignment and Shadow Sets
Keywords: End-to-End Tracking, Transformer, Multi-object Tracking
Abstract: Existing end-to-end Multi-Object Tracking (e2e-MOT) methods have not surpassed non-end-to-end tracking-by-detection methods. One possible reason lies in the training label assignment strategy that consistently binds the tracked objects with tracking queries and assigns few newborns to detection queries. Such an assignment, with one-to-one bipartite matching, yields an unbalanced training, _i.e._, scarce positive samples for detection queries, especially for an enclosed scene with the majority of the newborns at the beginning of videos. As such, e2e-MOT will incline to generate a tracking terminal without renewal or re-initialization, compared to other tracking-by-detection methods.
To alleviate this problem, we propose **Co-MOT**, a simple yet effective method to facilitate e2e-MOT by a novel coopetition label assignment with a shadow concept. Specifically, we add tracked objects to the matching targets for detection queries when performing the label assignment for training the intermediate decoders. For query initialization, we expand each query by a set of shadow counterparts with limited disturbance to itself.
With extensive ablation studies, Co-MOT achieves superior performances without extra costs, _e.g._, 69.4% HOTA on DanceTrack and 52.8% TETA on BDD100K. Impressively, Co-MOT only requires 38% FLOPs of MOTRv2 with comparable performances, resulting in the 1.4× faster inference speed. Source code is publicly available at [GitHub](https://github.com/BingfengYan/CO-MOT).
Supplementary Material: pdf
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10154
Loading