Rethinking the Effect of Data Augmentation in Adversarial Contrastive LearningDownload PDF

Published: 01 Feb 2023, Last Modified: 14 Oct 2024ICLR 2023 posterReaders: Everyone
Keywords: adversarial training, contrastive learning, adversarial contrastive learning
TL;DR: We revisit adversarial contrastive training through the lens of data augmentation, and propose an effective adversarial contrastive framework that outperforms vanilla supervised adversarial robustness.
Abstract: Recent works have shown that self-supervised learning can achieve remarkable robustness when integrated with adversarial training (AT). However, the robustness gap between supervised AT (sup-AT) and self-supervised AT (self-AT) remains significant. Motivated by this observation, we revisit existing self-AT methods and discover an inherent dilemma that affects self-AT robustness: either strong or weak data augmentations are harmful to self-AT, and a medium strength is insufficient to bridge the gap. To resolve this dilemma, we propose a simple remedy named DYNACL (Dynamic Adversarial Contrastive Learning). In particular, we propose an augmentation schedule that gradually anneals from a strong augmentation to a weak one to benefit from both extreme cases. Besides, we adopt a fast post-processing stage for adapting it to downstream tasks. Through extensive experiments, we show that DYNACL can improve state-of-the-art self-AT robustness by 8.84% under Auto-Attack on the CIFAR-10 dataset, and can even outperform vanilla supervised adversarial training for the first time. Our code is available at \url{https://github.com/PKU-ML/DYNACL}.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/rethinking-the-effect-of-data-augmentation-in/code)
15 Replies

Loading