Predictive Inference with Feature Conformal PredictionDownload PDF

Published: 01 Feb 2023, Last Modified: 22 Oct 2023ICLR 2023 posterReaders: Everyone
Keywords: conformal prediction, uncertainty
TL;DR: Conformal inference in feature space.
Abstract: Conformal prediction is a distribution-free technique for establishing valid prediction intervals. Although conventionally people conduct conformal prediction in the output space, this is not the only possibility. In this paper, we propose feature conformal prediction, which extends the scope of conformal prediction to semantic feature spaces by leveraging the inductive bias of deep representation learning. From a theoretical perspective, we demonstrate that feature conformal prediction provably outperforms regular conformal prediction under mild assumptions. Our approach could be combined with not only vanilla conformal prediction, but also other adaptive conformal prediction methods. Apart from experiments on existing predictive inference benchmarks, we also demonstrate the state-of-the-art performance of the proposed methods on \textit{large-scale} tasks such as ImageNet classification and Cityscapes image segmentation.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](
0 Replies