Pairwise Confidence Difference on Unlabeled Data is Sufficient for Binary ClassificationDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Weakly supervised learning, binary classification, unbiased risk estimator
TL;DR: The difference of confidence labels on unlabeled data pairs, as a novel type of weak supervision, is sufficient to train binary classifiers with theoretical guarantees.
Abstract: Learning with confidence labels is an emerging weakly supervised learning paradigm, where training data are equipped with confidence labels instead of exact labels. Positive-confidence (Pconf) classification is a typical learning problem in this context, where we are given only positive data equipped with confidence. However, pointwise confidence may not be accessible in real-world scenarios. In this paper, we dive into a novel weakly supervised learning problem called confidence-difference (ConfDiff) classification. Instead of pointwise confidence, we are given only unlabeled data pairs equipped with confidence difference specifying the difference in the probabilities of being positive. An unbiased risk estimator is derived to tackle the problem, and we show that the estimation error bound achieves the optimal convergence rate. Extensive experiments on benchmark data sets validate the effectiveness of our proposed approaches in leveraging the supervision information of the confidence difference.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
Supplementary Material: zip
9 Replies

Loading