Abstract: Selecting reliable negative training instances is the challenging task in the implicit feedback-based recommendation, which is optimized by pairwise learning on user feedback data. The existing methods usually exploit various negative samplers (i.e., heuristic-based or GAN-based sampling) on user feedback data to improve the quality of negative samples. However, these methods usually focused on maintaining the hard negative samples with a high gradient for training, causing the false negative samples to be selected preferentially. The limitation of the false negative noise amplification may lead to overfitting and further poor generalization of the model. To address this issue, we propose a Gain-Tuning Dynamic Negative Sampling GDNS to make the recommendation more robust and effective. Our proposed model designs an expectational gain sampler, concerning the expectation of user’ preference gap between the positive and negative samples in training, to guide the negative selection dynamically. This gain-tuning negative sampler can effectively identify the false negative samples and further diminish the risk of introducing false negative instances. Moreover, for improving the training efficiency, we construct positive and negative groups for each user in each iteration, and develop a group-wise optimizer to optimize them in a cross manner. Experiments on two real-world datasets show our approach significantly outperforms state-of-the-art negative sampling baselines.
0 Replies
Loading