3D-IntPhys: Learning 3D Visual Intuitive Physics for Fluids, Rigid Bodies, and Granular MaterialsDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Visual Intuitive Physics, Neural Implicit Representations, Graph Neural Networks, Learning-Based Dynamics Modeling, Particle-Based Dynamics
Abstract: Given a visual scene, humans have strong intuitions about how a scene can evolve over time under given actions. The intuition, often termed visual intuitive physics, is a critical ability that allows us to make effective plans to manipulate the scene to achieve desired outcomes without relying on extensive trial and error. In this paper, we present a framework capable of learning 3D-grounded visual intuitive physics models purely from unlabeled images. Our method is composed of a conditional Neural Radiance Field (NeRF)-style visual frontend and a 3D point-based dynamics prediction backend, in which we impose strong relational and structural inductive bias to capture the structure of the underlying environment. Unlike existing intuitive point-based dynamics works that rely on the supervision of dense point trajectory from simulators, we relax the requirements and only assume access to multi-view RGB images and (imperfect) instance masks. This enables the proposed model to handle scenarios where accurate point estimation and tracking are hard or impossible. We evaluate the models on three challenging scenarios involving fluid, granular materials, and rigid objects, where standard detection and tracking methods are not applicable. We show our model can make long-horizon future predictions by learning from raw images and significantly outperforms models that do not employ an explicit 3D representation space. We also show that, once trained, our model can achieve strong generalization in complex scenarios under extrapolate settings.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
TL;DR: An intuitive physics model with explicit 3D and compositional structures learned from multi-view videos. The learned model can handle complicated objects (e.g., fluid, rigid objects, granular materials) and perform extrapolated generalization.
Supplementary Material: zip
13 Replies

Loading