Keywords: system identification, non-autonomous differential equations, dynamical systems, variational inference, variational autoencoders, SINDy, sparse regression, uncertainty quantification, latent variable discovery, biophysics applications, biology, neuroscience
TL;DR: We introduce a method for identifying non-autonomous differential equations and discovering latent variables in dynamic systems, validated on synthetic data (e.g., the Lorenz system) and applied to neuronal activity data.
Abstract: An important challenge in many fields of science and engineering is making sense of time-dependent measurement data by recovering governing equations in the form of differential equations. We focus on finding parsimonious ordinary differential equation (ODE) models for nonlinear, noisy, and non-autonomous dynamical systems and propose a machine learning method for data-driven system identification. While many methods tackle noisy and limited data, non-stationarity – where differential equation parameters change over time – has received less attention. Our method, dynamic SINDy, combines variational inference with SINDy (sparse identification of nonlinear dynamics) to model time-varying coefficients of sparse ODEs. This framework allows for uncertainty quantification of ODE coefficients,
expanding on previous methods for autonomous systems. These coefficients are then interpreted as latent variables and added to the system to obtain an autonomous dynamical model. We validate our approach using synthetic data, including nonlinear oscillators and the Lorenz system, and apply it to neuronal activity data from C. elegans. Dynamic SINDy uncovers a global nonlinear model, showing it can
handle real, noisy, and chaotic datasets. We aim to apply our method to a wide range of problems, specifically to dynamic systems where complex parametric time dependencies are expected.
Supplementary Material: zip
Primary Area: learning on time series and dynamical systems
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12372
Loading