Tensor Programs VI: Feature Learning in Infinite Depth Neural Networks

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Tensor Programs, mup, deep learning, optimization, optimal hyperparameter transfer
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We introduce Depth-$\mu$P, a principled approach for depth scaling, allowing for the training of arbitrarily deep networks while maximizing feature learning and feature diversity.
Abstract: Empirical studies have consistently demonstrated that increasing the size of neural networks often yields superior performance in practical applications. However, there is a lack of consensus regarding the appropriate scaling strategy, particularly when it comes to increasing the depth of neural networks. In practice, excessively large depths can lead to model performance degradation. In this paper, we introduce Depth-$\mu$P, a principled approach for depth scaling, allowing for the training of arbitrarily deep architectures while maximizing feature learning and diversity among nearby layers. Our method involves dividing the contribution of each residual block and the parameter update by the square root of the depth. Through the use of Tensor Programs, we rigorously establish the existence of a limit for infinitely deep neural networks under the proposed scaling scheme. This scaling strategy ensures more stable training for deep neural networks and guarantees the transferability of hyperparameters from shallow to deep models. To substantiate the efficacy of our scaling method, we conduct empirical validation on neural networks with depths up to $2^{10}$.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: optimization
Submission Number: 8419
Loading