Keywords: Multi-modal Learning, Music Description, Text Generation
Abstract: In this paper, we consider a novel research problem, music-to-text synaesthesia. Different from the classical music tagging problem that classifies a music recording into pre-defined categories, the music-to-text synaesthesia aims to generate descriptive texts from music recordings for further understanding. Although this is a new and interesting application to the machine learning community, to our best knowledge, the existing music-related datasets do not contain the semantic description on music recordings and cannot serve the music-to-text synaesthesia task. In light of this, we collect a new dataset that contains 1,955 aligned pairs of classical music recordings and text descriptions. Based on this, we build a computational model to generate sentences that can describe the content of the music recording. To tackle the highly non-discriminative classical music, we design a group topology-preservation loss in our computational model, which considers more samples as a group reference and preserves the relative topology among different samples. Extensive experimental results qualitatively and quantitatively demonstrate the effectiveness of our proposed model over five heuristics or pre-trained competitive methods and their variants on our collected dataset.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
13 Replies
Loading