Tru-POMDP: Task Planning Under Uncertainty via Tree of Hypotheses and Open-Ended POMDPs

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY-NC 4.0
Keywords: Robotics, Planning under uncertainty, Robot task planning, Large language models, POMDPs
TL;DR: Tru-POMDP combines rigorous POMDP planning with structured belief generation via Large Language Models (LLMs).
Abstract: Task planning under uncertainty is essential for home-service robots operating in the real world. Tasks involve ambiguous human instructions, hidden or unknown object locations, and open-vocabulary object types, leading to significant open-ended uncertainty and a boundlessly large planning space. To address these challenges, we propose Tru-POMDP, a planner that combines structured belief generation using Large Language Models (LLMs) with principled POMDP planning. Tru-POMDP introduces a hierarchical Tree of Hypotheses (TOH), which systematically queries an LLM to construct high-quality particle beliefs over possible world states and human goals. We further formulate an open-ended POMDP model that enables rigorous Bayesian belief tracking and efficient belief-space planning over these LLM-generated hypotheses. Experiments on complex object rearrangement tasks across diverse kitchen environments show that Tru-POMDP significantly outperforms state-of-the-art LLM-based and LLM-tree-search hybrid planners, achieving higher success rates with significantly better plans, stronger robustness to ambiguity and occlusion, and greater planning efficiency.
Supplementary Material: zip
Primary Area: Reinforcement learning (e.g., decision and control, planning, hierarchical RL, robotics)
Submission Number: 18997
Loading