Improved grammatical error correction by ranking elementary edits

Published: 01 Jan 2022, Last Modified: 29 Oct 2025EMNLP 2022EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We offer a two-stage reranking method for grammatical error correction: the first model serves as edit generator, while the second classifies the proposed edits as correct or false. We show how to use both encoder-decoder and sequence labeling models for the first step of our pipeline. We achieve state-of-the-art quality on BEA 2019 English dataset even using weak BERT-GEC edit generator. Combining our roberta-base scorer with state-of-the-art GECToR edit generator, we surpass GECToR by 2-3%. With a larger model we establish a new SOTA on BEA development and test sets. Our model also sets a new SOTA on Russian, despite using smaller models and less data than the previous approaches.
Loading