Abstract: Multiple-objective optimization (MOO) aims to simultaneously optimize multiple conflicting o bjectives a nd has found important applications in machine learning, such as simultaneously minimizing classification a nd f airness l osses. At an optimum, further optimizing one objective will necessarily increase at least another objective, and decision-makers need to comprehensively explore multiple optima to pin-point one final solution. We address the efficiency of exploring the Pareto front that contains all optima. First, stochastic multi-gradient descent (SMGD) takes time to converge to the Pareto front with large neural networks and datasets. Instead, we explore the Pareto front as a manifold from a few initial optima, based on a predictor-corrector method. Second, for each exploration step, the predictor iteratively solves a large-scale linear system that scales quadratically in the number of model parameters, and requires one backpropagation to evaluate a second-order Hessian-vector product per iteration of the solver. We propose a Gauss-Newton approximation that scales linearly, and that requires only first-order i nner-product p er i teration. T hird, we explore different linear system solvers, including the MINRES and conjugate gradient methods for approximately solving the linear systems. The innovations make predictor-corrector efficient for large networks and datasets. Experiments on a fair misinformation detection task show that 1) the predictor-corrector method can find Pareto fronts better than or similar to SMGD with less time, and 2) the proposed first-order method does not harm the quality of the Pareto front identified b y t he second-order method, while further reducing running time.
0 Replies
Loading