On-Device Image Classification with Proxyless Neural Architecture Search and Quantization-Aware Fine-Tuning

Abstract: It is challenging to efficiently deploy deep learning models on resource-constrained hardware devices (e.g., mobile and IoT devices) with strict efficiency constraints (e.g., latency, energy consumption). We employ Proxyless Neural Architecture Search (ProxylessNAS) to auto design compact and specialized neural network architectures for the target hardware platform. ProxylessNAS makes latency differentiable, so we can optimize not only accuracy but also latency by gradient descent. Such direct optimization saves the search cost by 200× compared to conventional neural architecture search methods. Our work is followed by quantization-aware fine-tuning to further boost efficiency. In the Low Power Image Recognition Competition at CVPR'19, our solution won the 3rd place on the task of Real-Time Image Classification (online track).
0 Replies
Loading