Insect Bio-inspired Neural Network Provides New Evidence on How Simple Feature Detectors Can Enable Complex Visual Generalization and Stimulus Location Invariance in the Miniature Brain of HoneybeesDownload PDFOpen Website

Published: 01 Jan 2017, Last Modified: 05 Nov 2023PLoS Comput. Biol. 2017Readers: Everyone
Abstract: Author Summary We present two very simple neural network models based directly on the neural circuitry of honeybees. These models, using just four large-field visual input neurons from each eye that sparsely connect to a single layer of interneurons within the bee brain learning centres, are able to discriminate complex achromatic patterns without the need for an internal image representation. One model combining the visual input from both eyes showed an impressive invariance to the location of the test patterns on the retina and even succeeded with the partial occlusion of these cues, which would obviously be advantageous for free-flying bees. We show that during generalization experiments, where the models have to distinguish between two novel stimuli, one more similar to a training set of patterns, that both simple models have performances very similar to the empirical honeybee results. Our models only failed to generalize to the correct test pattern when the distractor pattern contained only a few small differences; we discuss how the protocols employed during training enable honeybees to still distinguish these stimuli. This research provides new insights into the surprisingly limited neurobiological complexity that is required for specific cognitive abilities, and how these mechanisms may be employed within the tiny brain of the bee.
0 Replies

Loading