Keywords: mode connectivity, Bézier surfaces, loss landscape, deep learning
Abstract: Understanding the loss landscapes of neural networks (NNs) is critical for optimizing model performance. Previous research has identified the phenomenon of mode connectivity on curves, where two well-trained NNs can be connected by a continuous path in parameter space where the path maintains nearly constant loss. In this work, we extend the concept of mode connectivity to explore connectivity on surfaces, significantly broadening its applicability and unlocking new opportunities. While initial attempts to connect models via linear surfaces in parameter space were unsuccessful, we propose a novel optimization technique that consistently discovers Bézier surfaces with low-loss and high-accuracy connecting multiple NNs in a nonlinear manner. We further demonstrate that even without optimization, mode connectivity exists in certain cases of Bézier surfaces, where the models are carefully selected and combined linearly. This approach provides a deeper and more comprehensive understanding of the loss landscape and offers a novel way to identify models with enhanced performance for model averaging and output ensembling. We demonstrate the effectiveness of our method on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets using VGG16, ResNet18, and ViT architectures.
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8888
Loading